The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) sqrt#(x) => sqrtAcc#(x, 0) (2) sqrtAcc#(x, y) => condAcc#(y * y >= x \/ y < 0, x, y) (3) condAcc#(false, x, y) => sqrtAcc#(x, y + 1) ***** We apply the Graph Processor on P1. There is only one SCC, so all DPs not inside the SCC can be removed: P2. (1) sqrtAcc#(x, y) => condAcc#(y * y >= x \/ y < 0, x, y) (2) condAcc#(false, x, y) => sqrtAcc#(x, y + 1) ***** We apply the Theory Arguments Processor on P2. We use the following theory arguments function: condAcc# : [1, 2, 3] sqrtAcc# : [1, 2] This yields the following new DP problems: P3. (1) sqrtAcc#(x, y) => condAcc#(y * y >= x \/ y < 0, x, y) (2) condAcc#(false, x, y) => sqrtAcc#(x, y + 1) { x, y } P4. (1) condAcc#(false, x, y) => sqrtAcc#(x, y + 1) ***** We apply the Theory Arguments Processor on P3. We use the following theory arguments function: condAcc# : [1, 2, 3] sqrtAcc# : [1, 2] This yields the following new DP problems: P5. (1) sqrtAcc#(x, y) => condAcc#(y * y >= x \/ y < 0, x, y) { x, y } (2) condAcc#(false, x, y) => sqrtAcc#(x, y + 1) { x, y } P6. (1) sqrtAcc#(x, y) => condAcc#(y * y >= x \/ y < 0, x, y) ***** We apply the Graph Processor on P4. As there are no SCCs, this DP problem is removed. ***** No progress could be made on DP problem P5.