The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) eval#(x, y, z) => eval#(x - 1, y, z) | x + y > z /\ z >= 0 /\ x > 0 (2) eval#(x, y, z) => eval#(x, y - 1, z) | x + y > z /\ z >= 0 /\ 0 >= x /\ y > 0 (3) eval#(x, y, z) => eval#(x, y, z) | x + y > z /\ z >= 0 /\ 0 >= x /\ 0 >= y ***** We apply the Graph Processor on P1. Considering the 2 SCCs, this DP problem is split into the following new problems. P2. (1) eval#(x, y, z) => eval#(x, y - 1, z) | x + y > z /\ z >= 0 /\ 0 >= x /\ y > 0 P3. (1) eval#(x, y, z) => eval#(x - 1, y, z) | x + y > z /\ z >= 0 /\ x > 0 ***** We apply the Integer Function Processor on P2. We use the following integer mapping: J(eval#) = arg_2 + 1 We thus have: (1) x + y > z /\ z >= 0 /\ 0 >= x /\ y > 0 |= y + 1 > y - 1 + 1 (and y + 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** We apply the Integer Function Processor on P3. We use the following integer mapping: J(eval#) = arg_1 + arg_2 - arg_3 - 1 We thus have: (1) x + y > z /\ z >= 0 /\ x > 0 |= x + y - z - 1 > x - 1 + y - z - 1 (and x + y - z - 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite.