The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) eval#(x, y) => eval#(x - 1, y) | x + y > 0 /\ x > y (2) eval#(x, y) => eval#(x - 1, y) | x + y > 0 /\ y >= x /\ x = y (3) eval#(x, y) => eval#(x, y - 1) | x + y > 0 /\ y >= x /\ y > x (4) eval#(x, y) => eval#(x, y - 1) | x + y > 0 /\ y >= x /\ x > y ***** We apply the Graph Processor on P1. Considering the 2 SCCs, this DP problem is split into the following new problems. P2. (1) eval#(x, y) => eval#(x - 1, y) | x + y > 0 /\ y >= x /\ x = y (2) eval#(x, y) => eval#(x, y - 1) | x + y > 0 /\ y >= x /\ y > x P3. (1) eval#(x, y) => eval#(x - 1, y) | x + y > 0 /\ x > y ***** We apply the Integer Function Processor on P2. We use the following integer mapping: J(eval#) = arg_1 We thus have: (1) x + y > 0 /\ y >= x /\ x = y |= x > x - 1 (and x >= 0) (2) x + y > 0 /\ y >= x /\ y > x |= x >= x We may remove the strictly oriented DPs, which yields: P4. (1) eval#(x, y) => eval#(x, y - 1) | x + y > 0 /\ y >= x /\ y > x ***** We apply the Integer Function Processor on P3. We use the following integer mapping: J(eval#) = arg_1 - 1 We thus have: (1) x + y > 0 /\ x > y |= x - 1 > x - 1 - 1 (and x - 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** We apply the Integer Function Processor on P4. We use the following integer mapping: J(eval#) = arg_2 We thus have: (1) x + y > 0 /\ y >= x /\ y > x |= y > y - 1 (and y >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite.