The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) eval#(x, y, z) => eval#(x - 1, y, z) | x > z (2) eval#(x, y, z) => eval#(x - 1, y, z) | y > z /\ x > z (3) eval#(x, y, z) => eval#(x, y - 1, z) | x > z /\ z >= x /\ y > z (4) eval#(x, y, z) => eval#(x, y - 1, z) | y > z /\ z >= x (5) eval#(x, y, z) => eval#(x, y, z) | x > z /\ z >= x /\ z >= y (6) eval#(x, y, z) => eval#(x, y, z) | y > z /\ z >= x /\ z >= y ***** We apply the Graph Processor on P1. Considering the 2 SCCs, this DP problem is split into the following new problems. P2. (1) eval#(x, y, z) => eval#(x, y - 1, z) | y > z /\ z >= x P3. (1) eval#(x, y, z) => eval#(x - 1, y, z) | x > z (2) eval#(x, y, z) => eval#(x - 1, y, z) | y > z /\ x > z ***** We apply the Integer Function Processor on P2. We use the following integer mapping: J(eval#) = arg_2 - arg_3 We thus have: (1) y > z /\ z >= x |= y - z > y - 1 - z (and y - z >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** We apply the Integer Function Processor on P3. We use the following integer mapping: J(eval#) = arg_1 - arg_3 - 1 We thus have: (1) x > z |= x - z - 1 > x - 1 - z - 1 (and x - z - 1 >= 0) (2) y > z /\ x > z |= x - z - 1 > x - 1 - z - 1 (and x - z - 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite.