The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) eval_1#(x, y) => eval_2#(x, y) | x > 0 (2) eval_2#(x, y) => eval_2#(x, y - 1) | x > 0 /\ y > 0 (3) eval_2#(x, y) => eval_1#(x - 1, y) | x > 0 /\ 0 >= y ***** We apply the Integer Function Processor on P1. We use the following integer mapping: J(eval_1#) = arg_1 J(eval_2#) = arg_1 We thus have: (1) x > 0 |= x >= x (2) x > 0 /\ y > 0 |= x >= x (3) x > 0 /\ 0 >= y |= x > x - 1 (and x >= 0) We may remove the strictly oriented DPs, which yields: P2. (1) eval_1#(x, y) => eval_2#(x, y) | x > 0 (2) eval_2#(x, y) => eval_2#(x, y - 1) | x > 0 /\ y > 0 ***** We apply the Graph Processor on P2. There is only one SCC, so all DPs not inside the SCC can be removed: P3. (1) eval_2#(x, y) => eval_2#(x, y - 1) | x > 0 /\ y > 0 ***** We apply the Integer Function Processor on P3. We use the following integer mapping: J(eval_2#) = arg_2 - 1 We thus have: (1) x > 0 /\ y > 0 |= y - 1 > y - 1 - 1 (and y - 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite.