The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) eval_1#(x, y, z) => eval_2#(x, y, z) | x > z (2) eval_2#(x, y, z) => eval_2#(x, y - 1, z) | x > z /\ y > z (3) eval_2#(x, y, z) => eval_1#(x - 1, y, z) | x > z /\ z >= y ***** We apply the Integer Function Processor on P1. We use the following integer mapping: J(eval_1#) = arg_1 - arg_3 - 1 J(eval_2#) = arg_1 - arg_3 - 1 We thus have: (1) x > z |= x - z - 1 >= x - z - 1 (2) x > z /\ y > z |= x - z - 1 >= x - z - 1 (3) x > z /\ z >= y |= x - z - 1 > x - 1 - z - 1 (and x - z - 1 >= 0) We may remove the strictly oriented DPs, which yields: P2. (1) eval_1#(x, y, z) => eval_2#(x, y, z) | x > z (2) eval_2#(x, y, z) => eval_2#(x, y - 1, z) | x > z /\ y > z ***** We apply the Graph Processor on P2. There is only one SCC, so all DPs not inside the SCC can be removed: P3. (1) eval_2#(x, y, z) => eval_2#(x, y - 1, z) | x > z /\ y > z ***** We apply the Integer Function Processor on P3. We use the following integer mapping: J(eval_2#) = arg_2 - arg_3 We thus have: (1) x > z /\ y > z |= y - z > y - 1 - z (and y - z >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite.