The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) eval_1#(x, y) => eval_2#(x, 0) | x > 0 (2) eval_2#(x, y) => eval_2#(x, y + 1) | x > 0 /\ y >= 0 /\ x > y (3) eval_2#(x, y) => eval_1#(x - 1, y) | x > 0 /\ y >= 0 /\ y >= x ***** We apply the Integer Function Processor on P1. We use the following integer mapping: J(eval_1#) = arg_1 J(eval_2#) = arg_1 We thus have: (1) x > 0 |= x >= x (2) x > 0 /\ y >= 0 /\ x > y |= x >= x (3) x > 0 /\ y >= 0 /\ y >= x |= x > x - 1 (and x >= 0) We may remove the strictly oriented DPs, which yields: P2. (1) eval_1#(x, y) => eval_2#(x, 0) | x > 0 (2) eval_2#(x, y) => eval_2#(x, y + 1) | x > 0 /\ y >= 0 /\ x > y ***** We apply the Graph Processor on P2. There is only one SCC, so all DPs not inside the SCC can be removed: P3. (1) eval_2#(x, y) => eval_2#(x, y + 1) | x > 0 /\ y >= 0 /\ x > y ***** We apply the Integer Function Processor on P3. We use the following integer mapping: J(eval_2#) = arg_1 - arg_2 - 1 We thus have: (1) x > 0 /\ y >= 0 /\ x > y |= x - y - 1 > x - (y + 1) - 1 (and x - y - 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite.