The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) f#(true, x, y) => fNat#(x >= 0 /\ y >= 0, x, y) (2) fNat#(true, x, y) => round#(y + 1) (3) fNat#(true, x, y) => f#(x > y, x, round(y + 1)) (4) round#(x) => if#(x % 2 = 0, x, x + 1) ***** We apply the Graph Processor on P1. There is only one SCC, so all DPs not inside the SCC can be removed: P2. (1) f#(true, x, y) => fNat#(x >= 0 /\ y >= 0, x, y) (2) fNat#(true, x, y) => f#(x > y, x, round(y + 1)) ***** We apply the Theory Arguments Processor on P2. We use the following theory arguments function: f# : [2] fNat# : [1, 2, 3] This yields the following new DP problems: P3. (1) f#(true, x, y) => fNat#(x >= 0 /\ y >= 0, x, y) (2) fNat#(true, x, y) => f#(x > y, x, round(y + 1)) { x, y } P4. (1) fNat#(true, x, y) => f#(x > y, x, round(y + 1)) ***** We apply the Theory Arguments Processor on P3. We use the following theory arguments function: f# : [2] fNat# : [1, 2, 3] This yields the following new DP problems: P5. (1) f#(true, x, y) => fNat#(x >= 0 /\ y >= 0, x, y) { x } (2) fNat#(true, x, y) => f#(x > y, x, round(y + 1)) { x, y } P6. (1) f#(true, x, y) => fNat#(x >= 0 /\ y >= 0, x, y) ***** We apply the Graph Processor on P4. As there are no SCCs, this DP problem is removed. ***** No progress could be made on DP problem P5.