The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) eval_1#(x, y) => eval_2#(x + 1, 1) | x >= 0 (2) eval_2#(x, y) => eval_2#(x, y + 1) | x >= 0 /\ y > 0 /\ x >= y (3) eval_2#(x, y) => eval_1#(x - 2, y) | x >= 0 /\ y > 0 /\ y > x ***** We apply the Integer Function Processor on P1. We use the following integer mapping: J(eval_1#) = arg_1 + 1 J(eval_2#) = arg_1 We thus have: (1) x >= 0 |= x + 1 >= x + 1 (2) x >= 0 /\ y > 0 /\ x >= y |= x >= x (3) x >= 0 /\ y > 0 /\ y > x |= x > x - 2 + 1 (and x >= 0) We may remove the strictly oriented DPs, which yields: P2. (1) eval_1#(x, y) => eval_2#(x + 1, 1) | x >= 0 (2) eval_2#(x, y) => eval_2#(x, y + 1) | x >= 0 /\ y > 0 /\ x >= y ***** We apply the Graph Processor on P2. There is only one SCC, so all DPs not inside the SCC can be removed: P3. (1) eval_2#(x, y) => eval_2#(x, y + 1) | x >= 0 /\ y > 0 /\ x >= y ***** We apply the Integer Function Processor on P3. We use the following integer mapping: J(eval_2#) = arg_1 - arg_2 We thus have: (1) x >= 0 /\ y > 0 /\ x >= y |= x - y > x - (y + 1) (and x - y >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite.