The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) eval#(x, y) => eval#(x - y, y) | x > y /\ x > 0 /\ y > 0 (2) eval#(x, y) => eval#(x - y, y) | y > x /\ x > 0 /\ y > 0 /\ x > y (3) eval#(x, y) => eval#(x, y - x) | x > y /\ x > 0 /\ y > 0 /\ y >= x (4) eval#(x, y) => eval#(x, y - x) | y > x /\ x > 0 /\ y > 0 /\ y >= x ***** We apply the Graph Processor on P1. There is only one SCC, so all DPs not inside the SCC can be removed: P2. (1) eval#(x, y) => eval#(x - y, y) | x > y /\ x > 0 /\ y > 0 (2) eval#(x, y) => eval#(x, y - x) | y > x /\ x > 0 /\ y > 0 /\ y >= x ***** We apply the Integer Function Processor on P2. We use the following integer mapping: J(eval#) = arg_1 We thus have: (1) x > y /\ x > 0 /\ y > 0 |= x > x - y (and x >= 0) (2) y > x /\ x > 0 /\ y > 0 /\ y >= x |= x >= x We may remove the strictly oriented DPs, which yields: P3. (1) eval#(x, y) => eval#(x, y - x) | y > x /\ x > 0 /\ y > 0 /\ y >= x ***** We apply the Integer Function Processor on P3. We use the following integer mapping: J(eval#) = arg_2 - arg_1 We thus have: (1) y > x /\ x > 0 /\ y > 0 /\ y >= x |= y - x > y - x - x (and y - x >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite.