The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) eval_1#(i, j) => eval_2#(i, 0) | i >= 0 (2) eval_2#(i, j) => eval_2#(i, j + 1) | j <= i - 1 (3) eval_2#(i, j) => eval_1#(i - 1, j) | j > i - 1 ***** We apply the Integer Function Processor on P1. We use the following integer mapping: J(eval_1#) = arg_1 + 1 J(eval_2#) = arg_1 We thus have: (1) i >= 0 |= i + 1 > i (and i + 1 >= 0) (2) j <= i - 1 |= i >= i (3) j > i - 1 |= i >= i - 1 + 1 We may remove the strictly oriented DPs, which yields: P2. (1) eval_2#(i, j) => eval_2#(i, j + 1) | j <= i - 1 (2) eval_2#(i, j) => eval_1#(i - 1, j) | j > i - 1 ***** We apply the Graph Processor on P2. There is only one SCC, so all DPs not inside the SCC can be removed: P3. (1) eval_2#(i, j) => eval_2#(i, j + 1) | j <= i - 1 ***** We apply the Integer Function Processor on P3. We use the following integer mapping: J(eval_2#) = arg_1 - 1 - arg_2 We thus have: (1) j <= i - 1 |= i - 1 - j > i - 1 - (j + 1) (and i - 1 - j >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite.