The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) eval#(x, y) => eval#(x - 1, z) | x >= 0 (2) eval#(x, y) => eval#(x, y - 1) | y >= 0 ***** We apply the Theory Arguments Processor on P1. We use the following theory arguments function: eval# : [1] This yields the following new DP problems: P2. (1) eval#(x, y) => eval#(x - 1, z) | x >= 0 (2) eval#(x, y) => eval#(x, y - 1) | y >= 0 { x, y } P3. (1) eval#(x, y) => eval#(x, y - 1) | y >= 0 ***** We apply the Integer Function Processor on P2. We use the following integer mapping: J(eval#) = arg_1 We thus have: (1) x >= 0 |= x > x - 1 (and x >= 0) (2) y >= 0 |= x >= x We may remove the strictly oriented DPs, which yields: P4. (1) eval#(x, y) => eval#(x, y - 1) | y >= 0 { x, y } ***** We apply the Integer Function Processor on P3. We use the following integer mapping: J(eval#) = arg_2 + 1 We thus have: (1) y >= 0 |= y + 1 > y - 1 + 1 (and y + 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** We apply the Integer Function Processor on P4. We use the following integer mapping: J(eval#) = arg_2 + 1 We thus have: (1) y >= 0 |= y + 1 > y - 1 + 1 (and y + 1 >= 0) All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite.