The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) f#(cons(f(cons(nil, Y)), U)) => copy#(n, Y, U) (2) copy#(0, V, W) => f#(W) (3) copy#(s(P), X1, Y1) => f#(X1) (4) copy#(s(P), X1, Y1) => copy#(P, X1, cons(f(X1), Y1)) (5) map#(H1, cons(W1, P1)) => map#(H1, P1) (6) filter#(Z2, cons(U2, V2)) => filter2#(Z2(U2), Z2, U2, V2) (7) filter2#(true, I2, P2, X3) => filter#(I2, X3) (8) filter2#(false, Z3, U3, V3) => filter#(Z3, V3) ***** We apply the Graph Processor on P1. Considering the 3 SCCs, this DP problem is split into the following new problems. P2. (1) copy#(s(P), X1, Y1) => copy#(P, X1, cons(f(X1), Y1)) P3. (1) map#(H1, cons(W1, P1)) => map#(H1, P1) P4. (1) filter#(Z2, cons(U2, V2)) => filter2#(Z2(U2), Z2, U2, V2) (2) filter2#(true, I2, P2, X3) => filter#(I2, X3) (3) filter2#(false, Z3, U3, V3) => filter#(Z3, V3) ***** We apply the Subterm Criterion Processor on P2. We use the following projection function: nu(copy#) = 1 We thus have: (1) s(P) |>| P All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** We apply the Subterm Criterion Processor on P3. We use the following projection function: nu(map#) = 2 We thus have: (1) cons(W1, P1) |>| P1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** We apply the Subterm Criterion Processor on P4. We use the following projection function: nu(filter#) = 2 nu(filter2#) = 4 We thus have: (1) cons(U2, V2) |>| V2 (2) X3 |>=| X3 (3) V3 |>=| V3 We may remove the strictly oriented DPs, which yields: P5. (1) filter2#(true, I2, P2, X3) => filter#(I2, X3) (2) filter2#(false, Z3, U3, V3) => filter#(Z3, V3) ***** We apply the Graph Processor on P5. As there are no SCCs, this DP problem is removed.