The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) plus#(s(Y), U) => plus#(Y, U) (2) times#(s(W), P) => times#(W, P) (3) times#(s(W), P) => plus#(times(W, P), P) (4) map#(I1, cons(P1, X2)) => map#(I1, X2) (5) inc#(X{13}) => plus#(X{14}, X{15}) (6) inc#(X{13}) => curry#(plus, s(0), X{16}) (7) inc#(X{13}) => map#(curry(plus, s(0)), X{13}) (8) double#(X{17}) => times#(X{18}, X{19}) (9) double#(X{17}) => curry#(times, s(s(0)), X{20}) (10) double#(X{17}) => map#(curry(times, s(s(0))), X{17}) ***** We apply the Graph Processor on P1. Considering the 3 SCCs, this DP problem is split into the following new problems. P2. (1) plus#(s(Y), U) => plus#(Y, U) P3. (1) times#(s(W), P) => times#(W, P) P4. (1) map#(I1, cons(P1, X2)) => map#(I1, X2) ***** We apply the Subterm Criterion Processor on P2. We use the following projection function: nu(plus#) = 1 We thus have: (1) s(Y) |>| Y All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** We apply the Subterm Criterion Processor on P3. We use the following projection function: nu(times#) = 1 We thus have: (1) s(W) |>| W All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** We apply the Subterm Criterion Processor on P4. We use the following projection function: nu(map#) = 2 We thus have: (1) cons(P1, X2) |>| X2 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite.