The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) plus#(s(Y), U) => plus#(Y, s(U)) (2) plus#(plus(V, W), P) => plus#(W, P) (3) plus#(plus(V, W), P) => plus#(V, plus(W, P)) (4) mult#(s(Y1), U1) => mult#(Y1, U1) (5) mult#(s(Y1), U1) => plus#(mult(Y1, U1), U1) (6) mult#(plus(V1, W1), P1) => mult#(V1, P1) (7) mult#(plus(V1, W1), P1) => mult#(W1, P1) (8) mult#(plus(V1, W1), P1) => plus#(mult(V1, P1), mult(W1, P1)) ***** We apply the Graph Processor on P1. Considering the 2 SCCs, this DP problem is split into the following new problems. P2. (1) plus#(s(Y), U) => plus#(Y, s(U)) (2) plus#(plus(V, W), P) => plus#(W, P) (3) plus#(plus(V, W), P) => plus#(V, plus(W, P)) P3. (1) mult#(s(Y1), U1) => mult#(Y1, U1) (2) mult#(plus(V1, W1), P1) => mult#(V1, P1) (3) mult#(plus(V1, W1), P1) => mult#(W1, P1) ***** We apply the Subterm Criterion Processor on P2. We use the following projection function: nu(plus#) = 1 We thus have: (1) s(Y) |>| Y (2) plus(V, W) |>| W (3) plus(V, W) |>| V All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** We apply the Subterm Criterion Processor on P3. We use the following projection function: nu(mult#) = 1 We thus have: (1) s(Y1) |>| Y1 (2) plus(V1, W1) |>| V1 (3) plus(V1, W1) |>| W1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite.