The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) minus#(s(Y), s(U)) => minus#(Y, U) (2) quot#(s(W), s(P)) => minus#(W, P) (3) quot#(s(W), s(P)) => quot#(minus(W, P), s(P)) (4) plus#(s(Y1), U1) => plus#(Y1, U1) (5) plus#(minus(V1, s(0)), minus(W1, s(s(P1)))) => minus#(W1, s(s(P1))) (6) plus#(minus(V1, s(0)), minus(W1, s(s(P1)))) => minus#(V1, s(0)) (7) plus#(minus(V1, s(0)), minus(W1, s(s(P1)))) => plus#(minus(W1, s(s(P1))), minus(V1, s(0))) (8) plus#(plus(X2, s(0)), plus(Y2, s(s(U2)))) => plus#(Y2, s(s(U2))) (9) plus#(plus(X2, s(0)), plus(Y2, s(s(U2)))) => plus#(X2, s(0)) (10) plus#(plus(X2, s(0)), plus(Y2, s(s(U2)))) => plus#(plus(Y2, s(s(U2))), plus(X2, s(0))) (11) map#(I2, cons(P2, X3)) => map#(I2, X3) (12) filter#(G3, cons(V3, W3)) => filter2#(G3(V3), G3, V3, W3) (13) filter2#(true, J3, X4, Y4) => filter#(J3, Y4) (14) filter2#(false, G4, V4, W4) => filter#(G4, W4) ***** We apply the Graph Processor on P1. Considering the 5 SCCs, this DP problem is split into the following new problems. P2. (1) minus#(s(Y), s(U)) => minus#(Y, U) P3. (1) quot#(s(W), s(P)) => quot#(minus(W, P), s(P)) P4. (1) plus#(s(Y1), U1) => plus#(Y1, U1) (2) plus#(minus(V1, s(0)), minus(W1, s(s(P1)))) => plus#(minus(W1, s(s(P1))), minus(V1, s(0))) (3) plus#(plus(X2, s(0)), plus(Y2, s(s(U2)))) => plus#(Y2, s(s(U2))) (4) plus#(plus(X2, s(0)), plus(Y2, s(s(U2)))) => plus#(X2, s(0)) (5) plus#(plus(X2, s(0)), plus(Y2, s(s(U2)))) => plus#(plus(Y2, s(s(U2))), plus(X2, s(0))) P5. (1) map#(I2, cons(P2, X3)) => map#(I2, X3) P6. (1) filter#(G3, cons(V3, W3)) => filter2#(G3(V3), G3, V3, W3) (2) filter2#(true, J3, X4, Y4) => filter#(J3, Y4) (3) filter2#(false, G4, V4, W4) => filter#(G4, W4) ***** We apply the Subterm Criterion Processor on P2. We use the following projection function: nu(minus#) = 1 We thus have: (1) s(Y) |>| Y All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** No progress could be made on DP problem P3.