The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) minus#(s(Y), s(U)) => minus#(Y, U) (2) quot#(s(W), s(P)) => minus#(W, P) (3) quot#(s(W), s(P)) => quot#(minus(W, P), s(P)) (4) log#(s(s(X1))) => quot#(X1, s(s(0))) (5) log#(s(s(X1))) => log#(s(quot(X1, s(s(0))))) (6) map#(G1, cons(V1, W1)) => map#(G1, W1) (7) filter#(F2, cons(Y2, U2)) => filter2#(F2(Y2), F2, Y2, U2) (8) filter2#(true, H2, W2, P2) => filter#(H2, P2) (9) filter2#(false, F3, Y3, U3) => filter#(F3, U3) ***** We apply the Graph Processor on P1. Considering the 5 SCCs, this DP problem is split into the following new problems. P2. (1) minus#(s(Y), s(U)) => minus#(Y, U) P3. (1) quot#(s(W), s(P)) => quot#(minus(W, P), s(P)) P4. (1) log#(s(s(X1))) => log#(s(quot(X1, s(s(0))))) P5. (1) map#(G1, cons(V1, W1)) => map#(G1, W1) P6. (1) filter#(F2, cons(Y2, U2)) => filter2#(F2(Y2), F2, Y2, U2) (2) filter2#(true, H2, W2, P2) => filter#(H2, P2) (3) filter2#(false, F3, Y3, U3) => filter#(F3, U3) ***** We apply the Subterm Criterion Processor on P2. We use the following projection function: nu(minus#) = 1 We thus have: (1) s(Y) |>| Y All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** No progress could be made on DP problem P3.