The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) neq#(s(U), s(V)) => neq#(U, V) (2) filter#(J, cons(X1, Y1)) => filtersub#(J(X1), J, cons(X1, Y1)) (3) filtersub#(true, G1, cons(V1, W1)) => filter#(G1, W1) (4) filtersub#(false, J1, cons(X2, Y2)) => filter#(J1, Y2) (5) nonzero#(X{14}) => neq#(0, X{15}) (6) nonzero#(X{14}) => filter#(neq(0), X{14}) ***** We apply the Graph Processor on P1. Considering the 2 SCCs, this DP problem is split into the following new problems. P2. (1) neq#(s(U), s(V)) => neq#(U, V) P3. (1) filter#(J, cons(X1, Y1)) => filtersub#(J(X1), J, cons(X1, Y1)) (2) filtersub#(true, G1, cons(V1, W1)) => filter#(G1, W1) (3) filtersub#(false, J1, cons(X2, Y2)) => filter#(J1, Y2) ***** We apply the Subterm Criterion Processor on P2. We use the following projection function: nu(neq#) = 1 We thus have: (1) s(U) |>| U All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** We apply the Subterm Criterion Processor on P3. We use the following projection function: nu(filter#) = 2 nu(filtersub#) = 3 We thus have: (1) cons(X1, Y1) |>=| cons(X1, Y1) (2) cons(V1, W1) |>| W1 (3) cons(X2, Y2) |>| Y2 We may remove the strictly oriented DPs, which yields: P4. (1) filter#(J, cons(X1, Y1)) => filtersub#(J(X1), J, cons(X1, Y1)) ***** We apply the Graph Processor on P4. As there are no SCCs, this DP problem is removed.