The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) sort#(G, H, cons(W, P)) => sort#(G, H, P) (2) sort#(G, H, cons(W, P)) => insert#(G, H, sort(G, H, P), W) (3) insert#(H1, I1, cons(P1, Y2), X2) => insert#(H1, I1, Y2, I1(P1, X2)) (4) max#(s(W2), s(P2)) => max#(W2, P2) (5) min#(s(U3), s(V3)) => min#(U3, V3) (6) asort#(W3) => min#(X{24}, X{25}) (7) asort#(W3) => max#(X{26}, X{27}) (8) asort#(W3) => sort#(min, max, W3) (9) dsort#(P3) => max#(X{28}, X{29}) (10) dsort#(P3) => min#(X{30}, X{31}) (11) dsort#(P3) => sort#(max, min, P3) ***** We apply the Graph Processor on P1. Considering the 4 SCCs, this DP problem is split into the following new problems. P2. (1) insert#(H1, I1, cons(P1, Y2), X2) => insert#(H1, I1, Y2, I1(P1, X2)) P3. (1) sort#(G, H, cons(W, P)) => sort#(G, H, P) P4. (1) max#(s(W2), s(P2)) => max#(W2, P2) P5. (1) min#(s(U3), s(V3)) => min#(U3, V3) ***** We apply the Subterm Criterion Processor on P2. We use the following projection function: nu(insert#) = 3 We thus have: (1) cons(P1, Y2) |>| Y2 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** We apply the Subterm Criterion Processor on P3. We use the following projection function: nu(sort#) = 3 We thus have: (1) cons(W, P) |>| P All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** We apply the Subterm Criterion Processor on P4. We use the following projection function: nu(max#) = 1 We thus have: (1) s(W2) |>| W2 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** We apply the Subterm Criterion Processor on P5. We use the following projection function: nu(min#) = 1 We thus have: (1) s(U3) |>| U3 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite.