The system is accessible function passing by a sort ordering that equates all sorts. We start by computing the following initial DP problem: P1. (1) times#(X, plus(Y, s(U))) => times#(s(U), 0) (2) times#(X, plus(Y, s(U))) => plus#(Y, times(s(U), 0)) (3) times#(X, plus(Y, s(U))) => times#(X, plus(Y, times(s(U), 0))) (4) times#(X, plus(Y, s(U))) => times#(X, s(U)) (5) times#(X, plus(Y, s(U))) => plus#(times(X, plus(Y, times(s(U), 0))), times(X, s(U))) (6) times#(W, s(P)) => times#(W, P) (7) times#(W, s(P)) => plus#(times(W, P), W) (8) plus#(Y1, s(U1)) => plus#(Y1, U1) (9) map#(I1, cons(P1, X2)) => map#(I1, X2) (10) filter#(G2, cons(V2, W2)) => filter2#(G2(V2), G2, V2, W2) (11) filter2#(true, J2, X3, Y3) => filter#(J2, Y3) (12) filter2#(false, G3, V3, W3) => filter#(G3, W3) ***** We apply the Graph Processor on P1. Considering the 4 SCCs, this DP problem is split into the following new problems. P2. (1) plus#(Y1, s(U1)) => plus#(Y1, U1) P3. (1) times#(X, plus(Y, s(U))) => times#(X, plus(Y, times(s(U), 0))) (2) times#(X, plus(Y, s(U))) => times#(X, s(U)) (3) times#(W, s(P)) => times#(W, P) P4. (1) map#(I1, cons(P1, X2)) => map#(I1, X2) P5. (1) filter#(G2, cons(V2, W2)) => filter2#(G2(V2), G2, V2, W2) (2) filter2#(true, J2, X3, Y3) => filter#(J2, Y3) (3) filter2#(false, G3, V3, W3) => filter#(G3, W3) ***** We apply the Subterm Criterion Processor on P2. We use the following projection function: nu(plus#) = 2 We thus have: (1) s(U1) |>| U1 All DPs are strictly oriented, and may be removed. Hence, this DP problem is finite. ***** No progress could be made on DP problem P3.