We consider the system AotoYamada_05__022. Alphabet: cons : [b * c] --> c leaf : [a] --> b mapt : [a -> a * b] --> b maptlist : [a -> a * c] --> c nil : [] --> c node : [c] --> b Rules: mapt(f, leaf(x)) => leaf(f x) mapt(f, node(x)) => node(maptlist(f, x)) maptlist(f, nil) => nil maptlist(f, cons(x, y)) => cons(mapt(f, x), maptlist(f, y)) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): mapt(F, leaf(X)) >? leaf(F X) mapt(F, node(X)) >? node(maptlist(F, X)) maptlist(F, nil) >? nil maptlist(F, cons(X, Y)) >? cons(mapt(F, X), maptlist(F, Y)) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: cons = Lam[y0;y1].3 + y1 + 2*y0 leaf = Lam[y0].y0 mapt = Lam[G0;y1].2 + 3*y1 + G0(0) + 3*y1*G0(y1) + 3*G0(y1) maptlist = Lam[G0;y1].3*y1 + G0(0) + G0(y1) + 3*y1*G0(y1) nil = 0 node = Lam[y0].3 + 2*y0 Using this interpretation, the requirements translate to: [[mapt(_F0, leaf(_x1))]] = 2 + 3*x1 + F0(0) + 3*x1*F0(x1) + 3*F0(x1) > x1 + F0(x1) = [[leaf(_F0 _x1)]] [[mapt(_F0, node(_x1))]] = 11 + 6*x1 + F0(0) + 6*x1*F0(3 + 2*x1) + 12*F0(3 + 2*x1) > 3 + 6*x1 + 2*F0(0) + 2*F0(x1) + 6*x1*F0(x1) = [[node(maptlist(_F0, _x1))]] [[maptlist(_F0, nil)]] = 2*F0(0) >= 0 = [[nil]] [[maptlist(_F0, cons(_x1, _x2))]] = 9 + 3*x2 + 6*x1 + F0(0) + 3*x2*F0(3 + x2 + 2*x1) + 6*x1*F0(3 + x2 + 2*x1) + 10*F0(3 + x2 + 2*x1) > 7 + 3*x2 + 6*x1 + F0(x2) + 3*x2*F0(x2) + 3*F0(0) + 6*x1*F0(x1) + 6*F0(x1) = [[cons(mapt(_F0, _x1), maptlist(_F0, _x2))]] We can thus remove the following rules: mapt(F, leaf(X)) => leaf(F X) mapt(F, node(X)) => node(maptlist(F, X)) maptlist(F, cons(X, Y)) => cons(mapt(F, X), maptlist(F, Y)) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): maptlist(F, nil) >? nil We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: maptlist = Lam[G0;y1].3 + 3*y1 + 2*G0(0) + 2*G0(y1) nil = 2 Using this interpretation, the requirements translate to: [[maptlist(_F0, nil)]] = 9 + 2*F0(0) + 2*F0(2) > 2 = [[nil]] We can thus remove the following rules: maptlist(F, nil) => nil All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.