We consider the system Applicative_05__TreeLevels. Alphabet: append : [a * a] --> a combine : [a * a] --> a cons : [a * a] --> a levels : [] --> a -> a map : [a -> a * a] --> a nil : [] --> a node : [a * a] --> a zip : [a * a] --> a Rules: map(f, nil) => nil map(f, cons(x, y)) => cons(f x, map(f, y)) append(x, nil) => x append(nil, x) => x append(cons(x, y), z) => cons(x, append(y, z)) zip(nil, x) => x zip(x, nil) => x zip(cons(x, y), cons(z, u)) => cons(append(x, z), zip(y, u)) combine(x, nil) => x combine(x, cons(y, z)) => combine(zip(x, y), z) levels node(x, y) => cons(cons(x, nil), combine(nil, map(levels, y))) This AFS is converted to an AFSM simply by replacing all free variables by meta-variables (with arity 0). We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): map(F, nil) >? nil map(F, cons(X, Y)) >? cons(F X, map(F, Y)) append(X, nil) >? X append(nil, X) >? X append(cons(X, Y), Z) >? cons(X, append(Y, Z)) zip(nil, X) >? X zip(X, nil) >? X zip(cons(X, Y), cons(Z, U)) >? cons(append(X, Z), zip(Y, U)) combine(X, nil) >? X combine(X, cons(Y, Z)) >? combine(zip(X, Y), Z) levels node(X, Y) >? cons(cons(X, nil), combine(nil, map(levels, Y))) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: append = Lam[y0;y1].y0 + y1 combine = Lam[y0;y1].y0 + y1 cons = Lam[y0;y1].1 + y0 + y1 levels = Lam[y0].0 map = Lam[G0;y1].y1 + 2*y1*G0(y1) + 2*G0(0) + 2*G0(y1) nil = 0 node = Lam[y0;y1].3 + 3*y0 + 3*y1 zip = Lam[y0;y1].1 + y0 + y1 Using this interpretation, the requirements translate to: [[map(_F0, nil)]] = 4*F0(0) >= 0 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 1 + x1 + x2 + 2*x1*F0(1 + x1 + x2) + 2*x2*F0(1 + x1 + x2) + 2*F0(0) + 4*F0(1 + x1 + x2) >= 1 + x1 + x2 + F0(x1) + 2*x2*F0(x2) + 2*F0(0) + 2*F0(x2) = [[cons(_F0 _x1, map(_F0, _x2))]] [[append(_x0, nil)]] = x0 >= x0 = [[_x0]] [[append(nil, _x0)]] = x0 >= x0 = [[_x0]] [[append(cons(_x0, _x1), _x2)]] = 1 + x0 + x1 + x2 >= 1 + x0 + x1 + x2 = [[cons(_x0, append(_x1, _x2))]] [[zip(nil, _x0)]] = 1 + x0 > x0 = [[_x0]] [[zip(_x0, nil)]] = 1 + x0 > x0 = [[_x0]] [[zip(cons(_x0, _x1), cons(_x2, _x3))]] = 3 + x0 + x1 + x2 + x3 > 2 + x0 + x1 + x2 + x3 = [[cons(append(_x0, _x2), zip(_x1, _x3))]] [[combine(_x0, nil)]] = x0 >= x0 = [[_x0]] [[combine(_x0, cons(_x1, _x2))]] = 1 + x0 + x1 + x2 >= 1 + x0 + x1 + x2 = [[combine(zip(_x0, _x1), _x2)]] [[levels node(_x0, _x1)]] = 3 + 3*x0 + 3*x1 > 2 + x0 + x1 = [[cons(cons(_x0, nil), combine(nil, map(levels, _x1)))]] We can thus remove the following rules: zip(nil, X) => X zip(X, nil) => X zip(cons(X, Y), cons(Z, U)) => cons(append(X, Z), zip(Y, U)) levels node(X, Y) => cons(cons(X, nil), combine(nil, map(levels, Y))) We use rule removal, following [Kop12, Theorem 2.23]. This gives the following requirements (possibly using Theorems 2.25 and 2.26 in [Kop12]): map(F, nil) >? nil map(F, cons(X, Y)) >? cons(F X, map(F, Y)) append(X, nil) >? X append(nil, X) >? X append(cons(X, Y), Z) >? cons(X, append(Y, Z)) combine(X, nil) >? X combine(X, cons(Y, Z)) >? combine(zip(X, Y), Z) We orient these requirements with a polynomial interpretation in the natural numbers. The following interpretation satisfies the requirements: append = Lam[y0;y1].1 + y1 + 3*y0 combine = Lam[y0;y1].3 + y0 + y1 cons = Lam[y0;y1].3 + y0 + y1 map = Lam[G0;y1].3 + 3*y1 + G0(y1) + 3*y1*G0(y1) nil = 2 zip = Lam[y0;y1].y0 + y1 Using this interpretation, the requirements translate to: [[map(_F0, nil)]] = 9 + 7*F0(2) > 2 = [[nil]] [[map(_F0, cons(_x1, _x2))]] = 12 + 3*x1 + 3*x2 + 3*x1*F0(3 + x1 + x2) + 3*x2*F0(3 + x1 + x2) + 10*F0(3 + x1 + x2) > 6 + x1 + 3*x2 + F0(x1) + F0(x2) + 3*x2*F0(x2) = [[cons(_F0 _x1, map(_F0, _x2))]] [[append(_x0, nil)]] = 3 + 3*x0 > x0 = [[_x0]] [[append(nil, _x0)]] = 7 + x0 > x0 = [[_x0]] [[append(cons(_x0, _x1), _x2)]] = 10 + x2 + 3*x0 + 3*x1 > 4 + x0 + x2 + 3*x1 = [[cons(_x0, append(_x1, _x2))]] [[combine(_x0, nil)]] = 5 + x0 > x0 = [[_x0]] [[combine(_x0, cons(_x1, _x2))]] = 6 + x0 + x1 + x2 > 3 + x0 + x1 + x2 = [[combine(zip(_x0, _x1), _x2)]] We can thus remove the following rules: map(F, nil) => nil map(F, cons(X, Y)) => cons(F X, map(F, Y)) append(X, nil) => X append(nil, X) => X append(cons(X, Y), Z) => cons(X, append(Y, Z)) combine(X, nil) => X combine(X, cons(Y, Z)) => combine(zip(X, Y), Z) All rules were succesfully removed. Thus, termination of the original system has been reduced to termination of the beta-rule, which is well-known to hold. +++ Citations +++ [Kop12] C. Kop. Higher Order Termination. PhD Thesis, 2012.