
Rewriting induction for higher-order constrained1

term rewriting systems2

Kasper Hagens and Cynthia Kop3

Radboud University Nijmegen, The Netherlands4

kasper.hagens@ru.nl, c.kop@cs.ru.nl5

Abstract. Logically Constrained Term Rewriting Systems (LCTRSs)6

provide a framework very suitable for modeling both imperative and7

functional languages. One may convert programs in traditional languages8

into LCTRSs, and then use methods from term rewriting to analyze9

properties such as termination or program equivalence.10

In particular in functional programming, higher-order constructs arise11

naturally. These have been studied using higher-order term rewriting.12

The recent definition of LCSTRSs combines higher-order rewriting with13

logical constraints, which creates the framework to closely model func-14

tional programs, but very few methods for their analysis have thus far15

been defined. Here, we study program equivalence for LCSTRSs, combin-16

ing the definition of rewriting induction for first-order constrained rewrit-17

ing with insights from unconstrained higher-order equivalence analysis.18

Keywords: Term Rewriting · LCSTRSs· higher-order LCTRSs· Rewrit-19

ing Induction · Inductive Theorems.20

1 Introduction21

Consider the following two Haskell definitions of sumfun :: (Int -> Int) ->22

Int -> Int which computes the function (f, x) 7→
∑x
i=0 f(i) for all x ≥ 0.23

(SFa) sumfun f x24

| x ≤ 0 = f x25

| otherwise = (f x) + (sumfun f (x - 1))26

(SFb) sumfun f x = foldl (+) 0 (map f [x,x -1..0])27

By human reasoning we know these implementations produce the same out-28

put for all inputs with x ≥ 0. The general problem of deciding whether two29

arbitrary programs produce the same output, for all possible inputs that satisfy30

some condition, is known as program equivalence. This is a challenging prob-31

lem, which naturally arises in software development. For example, code may32

be refactored for optimization purposes, to improve code maintainability, or in33

preparation for later updates [13]. To guarantee preservation of reliability and34

functionality, such transformations are expected to retain equivalence.35

There is a variety of methods to prove equivalence of programs automatically,36

e.g. abstract interpretation [6,21], Hoare-style proof rules [10], constrained Horn37

clauses [1,8], and Rewriting Induction (RI) [7,9,19]. This paper builds on the38

http://orcid.org/0009-0005-2382-0559
http://orcid.org/0000-0002-6337-2544

2 K. Hagens, C. Kop

latter approach. RI [22] is a proof system to prove/disprove convertibility of two39

terms. The idea is to translate two versions of the same program (or: program40

fragment) into a single term rewriting system, and use RI to prove equivalence41

of the terms corresponding to, for instance, the two different sumfun functions.42

In particular, this line of work considers translations to extensions of tradi-43

tional term rewriting systems with support for integers and booleans, as well44

as logical constraints to naturally model control flow – for example, rules like45

sum(x) → x + sum(x − 1) [x > 0]. We will focus on Logically Constrained Term46

Rewriting Systems (LCTRSs) [15], a unifying formalism that supports arbitrary47

theories (e.g., bitvectors, floating point numbers or integer arrays). Programs in48

(fragments of) imperative languages may be translated into LCTRSs automati-49

cally (see, e.g., [9,20]) and be analyzed using rewriting methods.50

However, when translating functional programs we soon encounter the prob-51

lem of higher-order constructs: functions like foldl and map, which take func-52

tions as arguments, have no counterpart in first-order term rewriting. They53

are, however, naturally modeled using higher-order term rewriting. A recent54

definition of Logically Constrained Simply typed Term Rewriting Systems (LC-55

STRSs) [12] combines higher-order rewriting with native support for theories and56

constraints. The question arises whether we can also define RI in this setting –57

and if so, if this is usable for program analysis.58

Bringing together higher-order rewriting with (constrained) RI poses new59

challenges. The papers [3,4] illustrate that, already for unconstrained higher-60

order rewriting, it is not easy to define what equivalence of terms even means. For61

first-order rewriting, this notion is straightforward, but higher-order rewriting62

admits multiple possible definitions – each of which comes with limitations, or63

loses important properties which makes them harder to analyze. Thus, a core64

task lies in finding definitions that allow us to not only adapt RI to the higher-65

order setting, but also have it usable in practice.66

Paper overview and contributions. After some preliminaries (Section 2),67

we build on the unconstrained literature to propose a basic definition of higher-68

order inductive theorems for higher-order LCTRSs (Section 3). We then extend69

RI for constrained TRSs to this new setting (Section 4). Unfortunately, the basic70

definition lacks the property of extensibility ; to solve this, we introduce a notion71

of global inductive theorems (Section 5) and show how to make it compatible with72

RI (Section 6). We conclude with some thoughts on future work (Section 7).73

Scientific context. Please note that the purpose of this paper is not to inves-74

tigate equivalence in Haskell in particular: we focus on constrained higher-order75

term rewriting systems. Translating Haskell and other (functional and imper-76

ative) languages into term rewriting is a topic of active research and beyond77

the scope of this paper. Here, we hope to provide a foundation for a form of78

higher-order analysis that in the future can be used as part of a larger toolbox79

to analyze programs, for example in Haskell, Scala or OCaml. We have chosen80

the LCSTRS formalism since this is the first higher-order extension of LCTRSs,81

and comes with existing (fully automated) support for termination analysis. Al-82

though LCSTRSs do not support lambda-expressions (an important structure83

Rewriting induction for higher-order constrained term rewriting systems 3

in functional programs), these can typically be encoded, and it seems likely that84

the theory will extend naturally when these are included in the future.85

2 Preliminaries86

2.1 Logically Constrained Simply Typed Rewriting Systems87

We will recap LCSTRSs [12], a higher-order extension of LCTRSs. This considers88

applicative higher-order rewriting (without λ) and first-order constraints.89

Types and terms. Assume given a set of sorts (base types) S; the set T of90

types is defined by the grammar T ::= S | T → T . Here, → is right-associative,91

so all types may be written as type1 → . . .→ typem → sort with m ≥ 0.92

We assume given a signature Σ of function symbols and a disjoint set V of93

variables, and a function typeof from Σ ∪ V to T ; we require that there are94

infinitely many variables of all types. The set of terms T (Σ,V) over Σ and V95

are the expressions in T – defined by the grammar T ::= Σ | V | T T – that96

are well-typed : if s :: σ → τ and t :: σ then s t :: τ , and a :: typeof (a) for97

a ∈ Σ∪V. For a term t, let Var(t) be the set of variables in t. A term t is ground98

if Var(t) = ∅. It is linear if no variable occurs more than once in t.99

We also assume given a subset Stheory ⊆ S of theory sorts (e.g., int and bool),100

and define the set of theory types by the grammar Ttheory ::= Stheory | Stheory →101

Ttheory. Each sort ι is associated with a non-empty set Iι (e.g., Iint = Z, the set102

of all integers), and we let Iι→σ be the set of functions from Iι to Iσ.103

We assume that Σ is the disjoint union Σtheory ⊎Σterms of two sets, where104

typeof (f) ∈ Ttheory for all f ∈ Σtheory. Each f ∈ Σtheory comes with an interpre-105

tation JfK ∈ Itypeof (f). For example, with a theory symbol ∗ :: int→ int→ int its106

interpretation may be multiplication on Z. Symbols in Σterms do not have an107

interpretation since their behavior will be defined through the rewriting system.108

Values are theory symbols of base type, i.e. Val = {v ∈ Σtheory | typeof (v) ∈109

Stheory}. There should be exactly one value for each element of Iι (ι ∈ Stheory).110

The set of theory terms is T (Σtheory,V). For ground theory terms, we define111

Js tK = JsK(JtK), thus mapping each term of type σ to an element of Iσ.112

We fix a theory sort bool with Ibool = {⊤,⊥}. A constraint is a theory term113

s of type bool, such that typeof (x) ∈ Stheory for all x ∈ Var(s).114

Example 1. In all examples in this paper, we will use Stheory = {int, bool} and115

Σtheory = {+,−, ∗, <,≤, >,≥,=,∧,∨,¬, true, false}∪{n | n ∈ Z}, with +,−, ∗116

:: int → int → int, <,≤, >,≥,=:: int → int → bool, ∧,∨ :: bool → bool → bool,117

¬ :: bool→ bool, true, false :: bool and n :: int. We let Iint = Z, Ibool = {⊤,⊥}118

and interpret all symbols as expected. We use infix notation for the binary119

symbols, or use [f] for prefix or partially applied notation (e.g., [+] x y and120

x+ y are the same). The values are true, false and all n. Theory terms are for121

instance x+3, true and −7∗0. The latter two are ground. We have J−7∗0K = 0.122

The theory term x > 0 is a constraint, but the theory term (x y) > 0 with123

x :: int→ int is not, nor is [>] 0 :: int→ bool (constraints are first-order terms).124

4 K. Hagens, C. Kop

Remark 1. Most programming languages have pre-defined (non-recursive) data125

structures and operators, e.g. the integers with a multiplication operator ∗. This126

makes it possible to for instance define the factorial function without first defin-127

ing multiplication. This is exactly what an LCSTRS seeks to replicate: we can128

think of Σtheory as the set of such pre-defined operators, including constants.129

Substitutions, contexts and positions. A substitution is a type-preserving130

mapping γ : V → T (Σ,V). The domain of a substitution is defined as dom(γ) =131

{x ∈ V | γ(x) ̸= x}, and the image of a substitution as im(γ) = {γ(x) |132

x ∈ dom(γ)}. A substitution on finite domain {x1, . . . , xn} is often denoted133

[x1 := s1, . . . , xn := sn]. A substitution γ is extended to a function s 7→ sγ on134

terms by placewise substituting variables in the term by their image: (i) tγ = t135

if t ∈ Σ, (ii) tγ = γ(t) if t ∈ V, and (iii) (t0 t1)γ = (t0γ) (t1γ). If M ⊆ T (Σ,V)136

then γ(M) denotes the set {tγ | t ∈M}. A unifier of terms s, t is a substitution137

γ such that sγ = tγ; a most general unifier or mgu is a unifier γ such that all138

other unifiers are instances of γ. For unifiable terms, an mgu always exists.139

Let □1, . . . ,□n be fresh, typed constants (n ≥ 1). A context C[□1, . . . ,□n]140

(or just: C) is a term in T (Σ ∪{□1, . . . ,□n},V) in which each □i occurs exactly141

once. (They may occur at the head of an application.) The term obtained from142

C by replacing each □i by a term ti of the same type is denoted by C[t1, . . . , tn].143

For a term t = a t1 · · · tn with a ∈ Σ∪V and n ≥ 0 (all terms can be denoted144

this way), the set of positions Pos(t) ⊆ N∗ is defined by: Pos(t) = {ϵ}∪
⋃n
i=1{i·p |145

p ∈ Pos(ti)}. We define the subterm t|p of t at position p ∈ Pos(t) as follows:146

(i) t|ϵ = t, (ii) (a t1 · · · tn)|i·p = ti|p. If t, s are terms and p ∈ Pos(t) then we147

define t[s]p as the term obtained from t by replacing t|p by s.148

Rules and reduction. A rule is an expression ℓ→ r [φ]. Here ℓ and r are terms149

of the same type, ℓ has a form f ℓ1 · · · ℓk with k ≥ 0 and f ∈ Σ, φ is a constraint,150

and for x ∈ Var(r) \ Var(ℓ), typeof (x) ∈ Stheory. If φ = true, we may denote151

the rule as just ℓ→ r. Define LV ar(ℓ→ r [φ]) = Var(φ) ∪ (Var(r) \ Var(ℓ)). A152

substitution γ respects ℓ→ r [φ] if γ(LV ar(ℓ→ r [φ])) ⊆ Val and JφγK = ⊤.153

We assume given a set of logically constrained rewrite rules R such that for154

ℓ→ r [φ] ∈ R, the left-hand side ℓ is not a theory term. In addition, let Rcalc be155

the set containing, for every f ∈ Σtheory\Val with typeof (f) = ι1 → . . .→ ιm → κ156

(κ ∈ Stheory) a rule f x1 · · ·xm → y [y = f x1 · · ·xm]. We call these calculation157

rules. The reduction relation →R is defined by:158

C[lγ]→R C[rγ] if ℓ→ r [φ] ∈ R ∪Rcalc and γ respects ℓ→ r [φ]

We say that s has normal form t if s→∗
R t and t cannot be reduced.159

For a fixed set of rules R, let D = {f ∈ Σ | there is a rule f ℓ1 · · · ℓk →160

r [φ] ∈ R}; we call the elements of D defined symbols, and the elements of161

C = Val ∪ (Σterms \ D) constructors. The elements of Σtheory \ Val are called162

calculation symbols. A term in T (C,V) is called a constructor term. A ground163

constructor substitution is a substitution γ such that im(γ) ⊆ T (C, ∅).164

For a rule ℓ→ r [φ] define head(ℓ→ r [φ]) = f if ℓ is of the shape f ℓ1 · · · ℓk.165

For f ∈ Σ define Rf = {ℓ→ r [φ] ∈ R | head(ℓ) = f} (so Rf = ∅ if f /∈ D).166

Rewriting induction for higher-order constrained term rewriting systems 5

A Logically Constrained Simply-typed Term Rewriting System (LCSTRS) is a167

pair (T (Σ,V),→R) generated by (S,Stheory, Σterms, Σtheory,V, typeof , I, J·K,R).168

To refer to an LCSTRS we often supply just Σ and R and leave the rest implicit.169

Example 2. Haskell function (SFa) can be modeled by S = Stheory = {int, bool},170

Σterms = {sumfun :: (int→ int)→ int→ int}, Σtheory from Example 1, and171

R =

{
(R1). sumfun f x→ f x [x ≤ 0]

(R2). sumfun f x→ [+] (f x) (sumfun f (x− 1)) [x > 0]

}
172

Then D = {sumfun}, and C = Val = {true, false} ∪ {n | n ∈ Z}. We have173

LV ar((R1)) = {x} and [x := 0] respects (R1). We have sumfun f 0→R f 0. An174

example of a rewrite sequence, computing a normal form: sumfun ([∗] 2) 1→(R2)175

[+] (([∗] 2) 1) (sumfun ([∗] 2) (1−1))→Rcalc
[+] 2 (sumfun ([∗] 2) (1−1))→Rcalc

176

[+] 2 (sumfun ([∗] 2) 0)→(R1) [+] 2 (([∗] 2) 0)→Rcalc
[+] 2 0→Rcalc

2.177

2.2 Rewriting Induction178

Equations. An equation is a triple s ≈ t [φ] with s, t terms of the same type and179

φ a constraint. A substitution γ respects φ if γ(Var(φ)) ⊆ Val and JφγK = ⊤. A180

substitution γ respects s ≈ t [φ] if γ respects φ and Var(s) ∪ Var(t) ⊆ dom(γ).181

Example 3. The function (SFb) from the introduction is modeled as follows182

(R3). fold g v nil→ v (R6). map f nil→ nil

(R4). fold g v (h : t)→ fold g (g v h) t (R7). map f (h : t)→ (f h) : map f t

(R5). init n→ nil [n < 0] (R8). init n→ n : init (n− 1) [n ≥ 0]

183

Now the equivalence mentioned in the introduction is expressed as below.184

sumfun f n ≈ fold [+] 0 (map f (init n)) [n ≥ 0]

Substitution [n := 0] does not respect the equation, but [n := 0, f := [∗] 2] does.185

Inductive theorems. Equivalence is defined via inductive theorems. For first-186

order rewriting, an equation s ≈ t [φ] is an inductive theorem if sγ ↔∗
R tγ for187

every ground substitution γ that respects this equation. Here, ↔R is the union188

→R ∪ ←R, and ↔∗
R is its transitive, reflexive closure.189

Rewriting Induction. Rewriting Induction (RI) is a proof system for showing190

that equations are inductive theorems. It proceeds by transforming proof states:191

pairs (E ,H) where E is a set of equations and H a set of rewrite rules. For such192

a proof state, we can think of E as the set containing all current proof goals,193

and of H as the set of induction hypotheses (oriented equations) that have been194

assumed in the process leading to this proof state. At the start E consists of all195

equations that we want to prove to be inductive theorems, and H = ∅. The goal196

of RI is to find a deduction sequence (E , ∅) ⊢∗ (∅,H), for some set H.197

There are subtle variations in the rules defining ⊢ between different first-order198

variants of RI (e.g. in [22,7,9]). We will not state the rules here, but provide a199

higher-order extension in Section 4. They typically satisfy the following property:200

6 K. Hagens, C. Kop

Let R be a terminating, quasi-reductive LCTRS and E a set of equations. If201

(E , ∅) ⊢∗ (∅,H) for some H, then every equation in E is an inductive theorem.202

The proof of this result relies on well-founded induction over the relation203

→R∪H, and therefore the method is limited to terminating LCTRSs (i.e. there204

are no infinite reductions s0 →R s1 →R s2 →R . . .). The result also relies on205

quasi-reductivity ; that is, that every ground normal form is a constructor term.206

Quasi-reductivity ensures that evaluation on ground terms cannot get “stuck”;207

roughly, that pattern matching is exhaustive. Termination and quasi-reductivity208

together ensure that every ground term reduces to a constructor term.209

3 Higher-order Inductive Theorems210

While the first-order definition of inductive theorems is straightforward, it is211

not immediately obvious how it should be extended to a higher-order setting. In212

particular, the question of extensionality comes into play. We will present some213

ideas from the literature, and then posit our definition, before also extending the214

notions of constructor term and quasi-reductivity, which will be needed for RI.215

3.1 Inductive theorems and extensionality216

A first definition of higher-order inductive theorems (without constraints) ap-217

pears in [4]. Aside from letting s ≈ t be an inductive theorem if sγ ↔∗
R tγ for218

all ground substitutions γ, the authors consider two functions equivalent if they219

are extensionally equivalent: their value on all inputs is equivalent. That is, for220

terms s, t of type σ1 → . . .→ σm → ι, they consider s ≈ t an inductive theorem221

if (s x1 · · ·xm)γ ↔∗
R (t x1 · · ·xm)γ. Hence, e.g. map ([+] 0) ≈ map ([∗] 1) is an222

inductive theorem since map ([+] 0) l ↔∗
R map ([∗] 1) l for all ground terms l.223

This is intuitive since functions are often viewed in an extensional way.224

Unfortunately, it comes at a price, since this definition violates monotonicity :225

the property that if s ≈ t is an inductive theorem and C a context, then C[s] ≈226

C[t] is also an inductive theorem. This is illustrated by the following example:227

Example 4. Let Σterms = {add :: nat → nat → nat, s :: nat → nat, 0 ::228

nat, fnil :: funclist, fcons :: (nat → nat) → funclist → funclist}, Σtheory = ∅ and229

R =
{
add x 0→ x , add x (s y)→ s (add x y)

}
. Every ground term of type nat230

has a normal form of the shape sn 0, for some n ∈ N, so we can restrict to ground231

substitutions of the shape γn = [x := sn 0]. Note that (add (s 0) x)γn
∗−→R232

sn+1 0
∗←−R (s x)γn. Hence add (s 0) ≈ s is an extensional inductive theorem.233

However, for C[□] = fcons □ fnil we do not have C[add (s 0)]↔∗
R C[s].234

The authors of [4] tackle the problem by imposing limitations on the systems235

they consider. Aside from other consequences (which are similar to the ones we236

will consider in Section 5), their restrictions essentially block constructors from237

taking higher-order arguments – thus for instance disallowing lists of functions238

Rewriting induction for higher-order constrained term rewriting systems 7

as used in Example 4. Since such constructs naturally occur in functional pro-239

grams, we consider this restriction too severe, and have elected not to go into240

the extensional direction. Instead, we keep the first-order definition, which also241

makes sense in the higher-order setting and does satisfy monotonicity:242

Definition 1 (Higher-order inductive theorems). An equation s ≈ t [φ]243

is a higher-order inductive theorem of an LCSTRS with rules R if sγ ↔∗
R tγ for244

every ground substitution γ that respects this equation.245

Discussion. The choice whether to consider extensionality ties in to a larger dis-246

cussion on the semantics of equations and (constrained higher-order) rewriting.247

Traditionally (in unconstrained rewriting), rules are seen as oriented equations.248

Ground terms may be interpreted in a model, and an equation s ≈ t holds in a249

model if for all ground instances sγ ≈ tγ of the equation, the interpretation of sγ250

and tγ is the same. We say that R ⊨ s ≈ t if s ≈ t holds in every model for which251

the rules of R all hold. In such a semantics, a term of higher type would typically252

be mapped to a function, so it is natural to use an extensional perspective where253

two terms are equivalent if their result on all input is equivalent.254

The authors of [2] define such a semantics for first-order LCTRSs, and prove255

that convertibility of ground terms corresponds to their semantic notion; i.e., an256

equation s ≈ t [φ] is “CE-valid” (which corresponds to our notion of inductive257

theorem) if and only if R ⊨ s ≈ t [φ]. However, in higher-order rewriting, this258

does not typically hold – even if we include abstraction and the η rule scheme.259

A very relevant paper with regards to higher-order equivalence is [3]. This260

paper defines “extensional theorems” (for unconstrained higher-order rewriting)261

as equivalence in a model, and shows that this semantic equivalence corresponds262

to syntactic equivalence of ground instances of equations in an inference system.263

This definition solves the monotonicity problem of [4] as monotonicity is built264

in, but it loses the direct correspondence to the convertibility relation ↔∗
R.265

We have elected not to follow this example because our primary application266

domain is not equational reasoning – where a semantic definition is the natural267

choice – but functional programming, where the syntactic notion of convertibility268

seems preferable. Definition 1 has the benefit of minimality: any equivalence269

relation that includes →R must include ↔∗
R. Hence, any higher-order inductive270

theorem is also an extensional theorem, and the method of rewriting induction271

defined in this paper can be used to derive extensional theorems as well.272

It is worth noting that if a system is ground confluent – i.e., if s →∗
R t273

and s→∗
R u for a ground term s, then there is a term w such that t→∗

R w and274

u→∗
R w – two ground terms are convertible if and only if they reduce to the same275

term (using→∗
R). This property is typically satisfied in LCSTRSs obtained from276

(deterministic) programs. Thus, in a terminating and ground confluent system,277

two terms are convertible if and only if they compute the same result.278

3.2 Higher-order quasi-reductivity279

Quasi-reductivity is an essential component of rewriting induction, since it allows280

us to reduce any ground term to a constructor term. Yet in higher-order rewriting281

8 K. Hagens, C. Kop

this property is hard to obtain, since it is usually possible for ground terms of282

function type to not be constructor terms; e.g., the term [+] 1, or the term init283

from Example 3. And Example 4, which seems relatively innocuous, even admits284

base-type ground non-constructor normal forms (e.g., fcons (add (s 0)) fnil).285

Thus, we will update our definition to include partially applied function sym-286

bols, both at the root and below constructors. For the notion of “partially ap-287

plied” to make sense, we impose a mild restriction on the LCSTRSs we consider:288

(Rule Arity) every f ∈ D with f :: σ1 → . . . → σm → ι, ι ∈ S has a rule arity289

k = ar(f) ≤ m, meaning that every rule in Rf is of the shape f l1 . . . lk → r [φ].290

That is, we do not for instance have both a rule add (s x) y → s (add x y)291

where add takes two arguments, and a rule add 0→ id where it takes only one.292

This is not a significant restriction because we can simply alter the second rule293

to add 0 x→ id x without changing its meaning. With this restriction, a symbol294

is partially applied if it has fewer than ar(f) arguments. This allows us to define:295

Definition 2 (Semi-constructor terms). Let L be some LCSTRS (Σ,R)296

(leaving V, typeof ,etc. implicit). The semi-constructor terms over L, notation297

SCT L, are defined by (i) V ⊆ SCT L, (ii) if f ∈ Σ with f :: σ1 → . . .→ σm → ι,298

ι ∈ S and s1 :: σ1, . . . , sn :: σn ∈ SCT L with n ≤ m, then f s1 · · · sn ∈ SCT L if:299

(ii.a) f ∈ C, or (ii.b) f ∈ D and n < ar(f), or (ii.c) f ∈ Σtheory \D and n < m.300

The set SCT ∅
L refers to ground semi-constructor terms (built without (i)).301

Note that all constructor terms are semi-constructor terms, by (i) and (ii.a). In302

our previous examples, [+] 1 and init and fcons (add (s 0)) fnil, are all (ground)303

semi-constructor terms as well. Non-examples of semi-constructor terms are for304

instance [+] 0 y and fcons (add (add 0 0)). Using (ii.b) we easily obtain:305

Lemma 1. Every semi-constructor term is in normal form.306

Now, ground semi-constructor terms are the higher-order counterpart of307

ground constructor terms, as intuitively, in an LCSTRS without missing cases308

in the pattern matching, the only ground normal forms are in SCT ∅
L.309

Definition 3 (Quasi-reductivity). An LCSTRS L = (Σ, typeof , R) is quasi-310

reductive if for every t ∈ T (Σ, ∅) we have t ∈ SCT ∅
L or t reduces with →R.311

Note that for quasi-reductive LCSTRSs, we can limit the substitutions in312

Definition 1 to substitutions such that im(γ) ⊆ SCT ∅
L, without loss of generality.313

We call such a substitution a ground semi-constructor substitution.314

4 Higher-order Rewriting Induction315

We will now give the derivation rules for higher-order RI. These are obtained316

from first-order RI [22,19,7,15,9], and adapted to the higher-order setting. We317

particularly build on RI, as defined in [15,9]. As a running example, we will use318

the LCSTRS and equation from Example 3. Thus, we start with the proof state:319

(E0, ∅) := ({ (A) sumfun f n ≈ fold [+] 0 (map f (init n)) [n ≥ 0] } , ∅)

Rewriting induction for higher-order constrained term rewriting systems 9

and show that we can derive some proof state (∅,H). Theorem 1, presented in320

Section 4.4, will guarantee the correctness of this procedure.321

4.1 Simplifying equations322

The first, core rule of rewriting induction is to rewrite an equation using a rule in323

R∪Rcalc∪H. We view an equation with variables as a way to represent all ground324

semi-constructor instances of that equation. Hence, we can use “constrained term325

reduction” [15], which takes the constraint of the equation into account.326

(Simplification) Let ℓ→ r [φ] ∈ R∪Rcalc∪H with C a context, δ a substitution327

such that δ(LV ar(ℓ→ r [φ])) ⊆ Val ∪ Var(ψ), and C[ℓδ] ≈ t [ψ] an equation. If328

the implication ψ =⇒ φδ is valid, then329

(E ⊎ {C[ℓδ] ≈ t [ψ]},H) ⊢ (E ∪ {C[rδ] ≈ t [ψ]},H)

There is an analogous Simplification rule to apply a rewrite rule to the right-hand330

side of an equation.331

Example 5. Starting with our running example, simplifying on the right-hand332

side of (A) using rule (R8) yields (E0, ∅) ⊢ (E1, ∅) with E1 = {(B) sumfun f n ≈333

fold [+] 0 (map f (n : (init (n− 1)))) [n ≥ 0] }. Using subsequent Simplification334

steps with (R7) and (R4), we have (E1, ∅) ⊢∗ (E3, ∅) with E3 = {(C) sumfun f n ≈335

fold [+] (0+ (f n)) (map f (init (n− 1))) [n ≥ 0] }.336

4.2 Expanding equations (doing a case analysis)337

After a few simplifications, we typically end up in a state where nothing can be338

done without knowing how the variables are instantiated. Our second rule allows339

us to do a case analysis and create an induction hypothesis at the same time.340

(Expansion) Let s ≈ t [φ] be an equation and p ∈ Pos(s) a position such341

that s|p = f s1 · · · sn with f ∈ D, n ≥ k = ar(f) and every argument si is a342

semi-constructor term. Suppose that R∪H ∪ {s→ t [φ]} is terminating. Then343

(E ⊎ {s ≈ t [φ]},H) ⊢ (E ∪ Expd(s ≈ t [φ], p),H ∪ {s→ t [φ]})

where Expd(s ≈ t [φ], p) is the set:344

{s[r sk+1 · · · sn]pγ ≈ tγ [(φγ) ∧ (ψγ)] | ℓ→ r [ψ] ∈ R,mgu(f s1 · · · sk, ℓ) = γ}

There is an analogous rule for performing Expansion on the right-hand side of345

an equation. In that case, t→ s [φ] is added to H.346

Example 6. In our running example, we expand the left-hand side of (C) at347

position ϵ. This gives (E3, ∅) ⊢ (E4,H1), where:348

E4 =

 (D) f n ≈ fold [+] (0+ (f n)) (map f (init (n− 1))) [n ≥ 0 ∧ n ≤ 0]
(E) (f n) + (sumfun f (n− 1)) ≈

fold [+] (0+ (f n)) (map f (init (n− 1))) [n ≥ 0 ∧ n > 0]


H1 = { (C’) sumfun f n → fold [+] (0+ (f n)) (map f (init (n− 1))) [n ≥ 0] }

10 K. Hagens, C. Kop

Viewing an equation as a way to represent a set of ground equations, this def-349

inition essentially allows us to split this set into multiple subsets, by considering350

the possible instances at position p of s. Since we have assumed quasi-reductivity,351

some rule is applicable at position p of sγ for any ground semi-constructor sub-352

stitution γ. The set Expd(s ≈ t [φ], p) contains a representative result equation353

for any of the rules that might have been chosen.354

Note that, after applying Expansion, the equation s ≈ t [φ] becomes an355

induction hypothesis, because we add it to H as an oriented equation. Therefore,356

we can think of Expansion as starting an induction proof on the subterm s|p.357

4.3 Altering (and generalizing) equations358

In Example 6, intuitively we should be able to simplify init (n − 1) in the first359

equation of E4 to nil, as the constraint implies n− 1 < 0. However, the Simplifi-360

cation rule does not allow this: the variable in the init rule must be instantiated361

by a value or variable. Nor can we apply Simplification with a calculation rule.362

Of course we could adapt the definition of Simplification, but this is actually363

part of a larger pattern: since our derivation rules rely on the shape of an equa-364

tion, it is often useful to alter an equation to a semantically equivalent one. That365

is, since an equation represents the set of its ground semi-constructor instances,366

we should be able to replace it by an equation that represents the same set.367

We define two very similar derivation rules: one that lets us replace an equa-368

tion by another equation that represents the same set, and a second that lets us369

replace an equation by another that may represent a larger set.370

(Generalize) Suppose that for every ground semi-constructor substitution (gsc)371

substitution γ that respects s ≈ t [φ] there exists a substitution δ that respects372

u ≈ v [ψ] such that sγ = uδ and tγ = vδ. Then373

(E ⊎ {s ≈ t [φ]},H) ⊢ (E ∪ {u ≈ v [ψ]},H)

If, moreover, for every gsc substitution δ that respects u ≈ v [ψ] there exists a374

substitution γ that respects s ≈ t [φ] such that sγ = uδ and tγ = vδ, then we375

refer to the deduction step as (Alter) instead.376

Example 7. Since n ≥ 0∧n ≤ 0 is logically equivalent to −1 = n−1, we can use377

Alter to replace (D) by f n ≈ fold [+] (0+(f n)) (map f (init (n−1))) [−1 = n−378

1]. Then we can use Simplification using the calculation rule x−y → z [z = x−y]379

and substitution γ = [x := n, y := 1, z := −1] to obtain380

f n ≈ fold [+] (0+ (f n)) (map f (init (−1))) [−1 = n− 1].381

Similarly, since n ≥ 0 ∧ n > 0 ⇐⇒ ∃m[n > 0 ∧m = n − 1], we can change the382

constraint of (E) to [n > 0∧m = n−1], and use two calculation steps to obtain:383

(f n) + (sumfun f m) ≈ fold [+] (0+(f n)) (map f (initm)) [n > 0∧m = n−1]384

We use Simplification a few more times to eventually end up at ({(F), (G)},H1):385

(F) f n ≈ 0+ (f n) [−1 = n− 1]
(G) (f n) + (sumfun f m) ≈ fold [+]

((0+ (f n)) + (f m)) (map f (init (m− 1))) [n > 0 ∧m = n− 1]

Rewriting induction for higher-order constrained term rewriting systems 11

Neither Simplification nor Expansion can be applied to (F), and it is not obvi-386

ously removable (see Section 4.4) since f could be instantiated by anything in387

SCT ∅
L. However, using Generalize, we can replace (F) by: x ≈ (0+x). Then, using388

Alter and Simplification with a calculation rule, we obtain: (H) x ≈ x [x = 0+x].389

Discussion. Despite their similarity, the Alter and Generalize rules are used in390

very different ways. Alter is more innocent: replacing an equation by an equiva-391

lent one cannot harm the proof process – in contrast with Generalize, which can392

easily replace an equation that is an inductive theorem by one that is not.393

In practice, Alter is typically used in combination with other derivation rules,394

e.g., to set up a Simplification step with a calculation as done in Example 7. We395

most often use Alter to replace s ≈ t [φ] by u ≈ v [ψ] in the following scenarios:396

I. (replacing a constraint by an equi-satisfiable one) s = u and t = v and397

(∃x⃗.φ) ⇐⇒ (∃y⃗.ψ) is valid, where {x⃗} = Var(φ) \ (Var(s) ∪ Var(t)) and398

{y⃗} = Var(ψ) \ (Var(u) ∪ Var(v)). (This is particularly done before a Sim-399

plification step, to put the constraint in the right shape.)400

II. (replacing variables/values by equivalent ones) s = C[x1, . . . , xn] and u =401

C[y1, . . . , yn] and t = v and φ = ψ, if all xi, yi are values or variables in402

Var(φ), and φ =⇒
∧n
i=1 xi = yi is valid. For example, replacing f n ≈ f 0 [n =403

0] by f 0 ≈ f 0 [n = 0]. (This is particularly useful when t = C[y1, . . . , yn].)404

III. (adding safe variables to the constraint) s = u and t = v and ψ = φ∧ (x1 =405

x1)∧· · ·∧ (xn = xn), where x1, . . . , xn are variables in s, u that do not occur406

in φ, but whose type is a theory sort ι ∈ Stheory such that no constructors407

of a type σ1 → . . . → σm → ι exist other than values (and therefore, any408

ground semi-constructor instance of this variable must be a value).409

On the other hand, Generalize is primarily used as a form of lemma gen-410

eration: as we will see in Section 4.4, it is sometimes needed to generalize an411

equation to obtain a stronger induction hypothesis. Finding suitable lemmas is412

a core challenge in inductive theorem proving. Generalization is also useful to413

abstract away from variable applications, as done for f n in Example 7.414

4.4 Finishing up415

Thus far, we have only modified equations; to remove them from E , we can use:416

(Deletion) Let s ≈ t [φ] be such that either s = t or φ is unsatisfiable, then417

(E ⊎ {s ≈ t [φ]},H) ⊢ (E ,H)

Example 8. We apply Deletion to (H) and obtain (E6,H1) with E6 = {(G)}.418

We have now defined all the inference rules necessary to complete our running419

example. The process is mostly straightforward; we detail only the harder steps.420

First, in equation (G), we use Simplification with the induction rule (C’) to get:421

(f n) + (fold [+] (0+ (f m)) (map f (init (m− 1)))) ≈
fold [+] ((0+ (f n)) + (f m)) (map f (init (m− 1))) [n > 0 ∧m = n− 1]

422

12 K. Hagens, C. Kop

After Alter and a calculation step, we arrive at:423

(f n) + (fold [+] (0+ (f m)) (map f (init k))) ≈
fold [+] ((0+ (f n)) + (f m)) (map f (init k)) [n > 0 ∧m = n− 1 ∧ k = m− 1]

424

Now, we could continue to do Expansions, but doing so would result in a loop:425

none of the induction rules this process generates ends up being applicable. To426

avoid this issue, we instead use Generalize to obtain:427

x+ (fold [+] (0+ y) l) ≈ fold [+] ((0+ x) + y) l428

In the next Expansion step, the termination requirement forces us to expand429

on the left rather than the right, creating an induction rule:430

x+ (fold [+] y l)→ fold [+] z l [z = x+ y]431

This rule has a calculation symbol (+) as the root symbol on the left, which432

is non-standard, but allowed in LCSTRSs, and termination can be proved. The433

rest of the proof is entirely straightforward.434

Although we did not need it for our running example, we also adapt the435

Constructor rule of [9] because it changes in the higher-order setting.436

(Semi-constructor) Let s⃗ = s1 . . . sn and t⃗ = t1 . . . tn be terms with n > 0.
If c is either a variable, a constructor, a defined symbol with ar(c) > n or a
non-defined calculation symbol of type σ1 → . . .→ σm → ι with m > n then(

E ⊎ {c s⃗ ≈ c t⃗ [φ]},H
)
⊢ (E ∪ {si ≈ ti [φ] | 1 ≤ i ≤ n} ,H)

Example 9. In an extension of the LCSTRS of Example 2 with extra symbols, we437

could deduce ({fold g (h 0 x) ≈ fold h (g 0 x)}, ∅) ⊢ ({g ≈ h, h 0 x ≈ g 0 x}, ∅).438

Theorem 1. Let L be a terminating, quasi-reductive LCSTRS and let E be a set439

of equations. If, by higher-order rewriting induction, (E , ∅) ⊢∗ (∅,H), for some440

set H, then every equation in E is a higher-order inductive theorem of L.441

The proof of Theorem 1 (in Appendix A) follows the same outline as in first-order442

RI [14,9]. It proceeds by showing that certain properties are invariant through443

every proof step, and uses an induction on →R∪H to prove ↔E ⊆ ↔R.444

4.5 Comparison to the first-order literature445

Surprisingly few changes were needed to adapt the first-order definitions in [9]446

to the higher-order setting. The most important changes are the new definitions447

of quasi-reductivity and semi-constructor terms. The proof was also adapted to448

take these changes into account, but its overall structure remains the same.449

The most significant change compared to [9] could already have been made450

in the first-order setting: the introduction of Alter, and updating Generalize to451

quantify over ground semi-constructor substitutions, rather than all substitu-452

tions. In [9], scenario I was combined with Simplification, and a separate rule453

(Eq-Deletion) was used to handle II, but III was not supported – thus leaving454

it impossible to prove for instance init (n+ 1) ≈ init (1 + n) if n was not in the455

constraint. This limitation is particularly relevant in the higher-order setting:456

due to proof states with higher-order variables (such as (F)), the Generalize457

rule is needed much more often than in first-order RI, and to progress the proof458

further we need to be able to move the resulting variables into the constraint.459

Rewriting induction for higher-order constrained term rewriting systems 13

5 Global induction theorems460

A very desirable property we do not yet have is extensibility. This means that if461

an equation is an inductive theorem in R, it remains an inductive theorem in any462

reasonable (i.e., adding defined symbols, not constructors) LCSTRS extending463

R. In terms of functional programming, it should be possible to import functions464

from external modules without breaking any equivalence. Extensibility allows for465

more local reasoning: to prove properties about a small part of a larger system, it466

is very desirable to only have to consider the rules that are directly related. This467

property is also used in some existing methods for program transformations (see,468

e.g., [5]). The authors of [3] give the following example to illustrate the issue:469

Example 10. Let Σterms = {zero :: (nat → nat) → nat, add :: nat → nat →470

nat, s :: nat→ nat, 0 :: nat}, Σtheory = ∅ and let R consist of471

add 0 y → y add (s x) y → s (add x y) zero s→ 0

Then add x y ≈ add y x is an inductive theorem, since (add x y)γ ↔∗
R (add y x)γ472

holds for any ground substitution γ. However, if we introduce a new defined473

symbol f :: nat → nat and rule f x → 0 then add x y ≈ add y x is not an474

inductive theorem since add 0 (zero f)↔∗
R′ add (zero f) 0 does not hold.475

A key problem in Example 10 is that the extension breaks quasi-reductivity:476

by importing f we create a missing pattern in Rzero. This is caused by pattern477

matching on a function: the last rule matches on the expression s which is a478

non-variable term of type nat → nat. If we now import any new symbol of479

this type, no matter how innocent, it creates a new pattern; and thus quasi-480

reductivity is lost. From the perspective of functional programming, rules like481

this seem very unnatural; it is not typically allowed for a pattern to have a482

higher-order subterm that is not a variable. Thus, we argue that the original483

system is inherently problematic. To prevent such pathological examples, we484

extend the definition of quasi-reductivity to exclude this program structure.485

Definition 4 (CHV term). Let L be an LCSTRS. A Constructor term with486

(only) Higher-order Variables (CHV term) over L is a constructor term s over487

L such that Var(s) contains only variables of higher type.488

Definition 5 (Strong quasi-reductivity). An LCSTRS L = (Σ,R) with de-489

fined symbols D is strong quasi-reductive if any term of the form f s1 · · · sn with490

f ∈ D, n ≥ ar(f) and each si a CHV term over L reduces with →R.491

Any strong quasi-reductive LCSTRS is also quasi-reductive (see Appendix B).492

An LCSTRS is certainly strong quasi-reductive if it has exhaustive pattern493

matching, left-linear rules and all strict higher-order subterms of left-hand sides494

are variables. Strong quasi-reductivity is close to (and implies) the quasi-reduci-495

bility notion in [3]. On the other hand, strong quasi-reductivity is weaker than496

the notion of higher-order sufficient completeness (HSC) in [4].497

Unfortunately, limiting interest to strong quasi-reductive systems does not498

suffice to obtain extensibility:499

14 K. Hagens, C. Kop

Example 11. Let Σterms = {a :: A, b :: A, c :: C, f :: (C→ A)→ A, g :: C→ A},500

Σtheory = ∅ and consider the LCSTRS with rules f F → F c and g x→ b. Then501

f F ≈ b is an inductive theorem, since the only ground term that can instantiate502

F is g, and indeed f g→R g c→R b. However, this is not an inductive theorem503

if we extend the signature with a defined symbol h :: C→ A and rule h x→ a.504

Here, f F ≈ b is a (naive) inductive theorem because of a global reasoning505

over the original signature: there is only one possible instance of F . This is of506

course no longer true in the extension. To avoid examples like this, we follow507

the approach of [3] and directly define a kind of inductive theorems that are508

preserved under extensions – provided they satisfy reasonable restrictions:509

Definition 6 (Natural extensions). An LCSTRS L′ (generated by S ′, Σ′,510

R′, etc.) is a natural extension of L (generated by S, Σ,R, etc.) if:511

– S ′ ⊇ S and S ′theory ⊇ Stheory and Σ′
theory ⊇ Σtheory and Σ′

terms ⊇ Σterms512

and V ′ ⊇ V and R′ ⊇ R513

– I ′ι = Iι for all ι ∈ Stheory, and JfK′ = JfK for all f ∈ Σtheory514

– for all a ∈ Σ ∪ V: typeof ′(a) = typeof (a)515

– for all f ∈ Σ: R′
f = Rf (so R′ \R does not define any of the constructors in516

L, nor add cases to a defined symbol or calculation symbol)517

– for all f :: σ1 → . . .→ σm → ι ∈ Σ′, all i: there is a ground term of type σi518

– for all constructor symbols c :: σ1 → . . .→ σm → ι ∈ C′ \ C we have ι /∈ S519

Hence, a natural extension can add more rules, but cannot interfere with the520

meaning of the original LCSTRS, nor add new patterns to its sorts. Note that,521

by the last restriction, any ground constructor term of a sort ι that occurs in522

the original signature can only use constructors in this signature.523

Definition 7 (Global inductive theorems). An equation s ≈ t [φ] over a524

terminating, strong quasi-reductive LCSTRS L is a global inductive theorem of525

L if for every terminating, quasi-reductive natural extension L′ with rules R′
526

and every ground substitution γ over L′ that respects this equation: sγ ↔∗
R′ tγ.527

6 Global rewriting induction528

We now aim to extend higher-order RI in such a way that it proves equations to529

be global inductive theorems. Largely, this is straightforward (as we can mostly530

ignore rules whose defined symbols do not occur inside the equation), but a major531

problem arises with the Expansion rule: we now have to prove termination of532

R′ ∪H for any natural extension R′ of R. This is in general not possible.533

To handle this issue, we use a specific, more manageable kind of extension:534

Definition 8 (Oracle extension). An Oracle extension of an LCSTRS L =535

(Σ,R) is a natural extension Q = (ΣQ,RQ) such that all rules in RQ \R have536

a form f v1 · · · vm → w where f :: σ1 → . . . → σm → ι (ι ∈ S ′), all vi ground,537

and each w is a ground semi-constructor term over Q that contains no defined538

symbols of R. Moreover, Q is quasi-reductive and terminating.539

Rewriting induction for higher-order constrained term rewriting systems 15

Thus, an Oracle extension adds functions that, given ground arguments, compute540

a semi-constructor result in exactly one step. Moreover, their right-hand sides541

do not use defined symbols in R, thus removing any dependency. We call the542

rules of RQ \ R oracle rules. There are typically infinitely many.543

The idea is that a natural extension L′ of L may be translated into an Oracle544

extension essentially by taking, for every defined symbol f of R′ \R and ground545

terms v1, . . . , vm, the normal form w of f v1 · · · vm, and including f v1 · · · vm → w546

as a rule. To ensure that the right-hand sides of the oracle rules do not use the547

defined symbols of R, we also include copies versions of these defined symbols,548

and corresponding rules. The full construction is in Appendix C.1.549

Lemma 2. An equation s ≈ t [φ] over a terminating, strong quasi-reductive550

LCSTRS is a global inductive theorem of L if for every Oracle extension Q and551

ground substitution γ over Q that respects this equation: sγ ↔∗
RQ tγ.552

We now update higher-order RI in such a way that we can prove global induc-553

tive theorems of terminating, strong quasi-reductive LCSTRSs. Since the only554

function symbols occurring in equations and rules are those in the original sig-555

nature, the Simplification rule is unchanged. The Deletion and Semi-constructor556

rules are also the same. For the Alter and Generalize rule, we now quantify557

over all ground semi-constructor substitutions in the extended signature, but558

scenarios I–III all still apply. Hence, the only rule that changes is Expansion.559

Global Expansion Let s ≈ t [φ] be an equation and p ∈ Pos(s) a position560

such that s|p = f s1 · · · sn with f ∈ D, n ≥ k = ar(f) and for all 1 ≤ i ≤ k,561

q ∈ Pos(si): if si|q has base type and is not a variable, then si|q has a form562

c t1 · · · tm with c a constructor symbol. If RQ ∪ H ∪ {s → t [φ]} is terminating563

for every Oracle extension Q of L then564

(E ⊎ {s ≈ t [φ]},H) ⊢ (E ∪ Expd(s ≈ t [φ], p),H ∪ {s→ t [φ]})

Compared to the original Expansion rule, the requirement on the shape of565

the si is weaker than before; this is possible due to the strong quasi-reductivity566

requirement. While the termination requirement is harder to check, this could567

be done either through dynamic dependency pairs [18,17] (since the oracle rules568

do not generate any dependency pairs), or, if certain (reasonable) restrictions on569

the original system are satisfied, using static dependency pairs. An automated570

variation of the latter approach is available for LCSTRSs [11]. We use Oracle571

extensions, rather than arbitrary (terminating, strong quasi-reductive) natural572

extensions, because the extra rules do not depend on the defined symbols of L,573

which is what makes it feasible to prove termination results.574

6.1 Soundness result575

We let “global rewriting induction” be the proof process obtained from the Sim-576

plification, Deletion, Semi-constructor and updated Generalization and Alter577

rules, along with Global Expansion. We then obtain the main result:578

16 K. Hagens, C. Kop

Theorem 2. Let L be a terminating, strong quasi-reductive LCSTRS and let E579

be a set of equations. If, by global rewriting induction, (E , ∅) ⊢∗ (∅,H), for some580

set H, then every equation in E is a global inductive theorem of L.581

The proof of Theorem 2 (Appendix C) follows a very similar outline as the582

soundness proof of Theorem 1: for an arbitrary Oracle extension Q of L we use583

induction on→RQ∪H to prove that↔E ⊆↔∗
RQ . Using this and Lemma 2 we find584

that the same holds for any quasi-reductive and terminating natural extension.585

Compared to the proof in Appendix A the most important changes are:586

– In every step, we consider the Oracle extension rather than L directly.587

– In the proof that the Global Expansion rule maintains the invariants, we use588

the definition of strong quasi-reductivity to show that a ground base-type589

term of the shape f s1 · · · sn (with f ∈ D) can be reduced at the root if si|q590

has a constructor as head symbol whenever si|q has base type.591

7 Discussion and future work592

In this paper we proposed two variations of higher-order rewriting induction for593

constrained term rewriting systems. This includes two adaptations of inductive594

theorems, based on quasi-reductivity for higher-order LCSTRSs, and in the latter595

case, also on extensibility. We do not claim that the proof system is finished, but596

it provides a solid foundation for further work.597

An obvious extension is to use rewriting induction not just to prove that598

equations are (global) inductive theorems, but also to prove that they are not.599

The mechanism for this exists [9] (in first-order RI) and we do not foresee major600

issues. It uses an additional flag in proof states to keep track of when we are601

allowed to derive non-equivalence (since the Generalize rule sometimes creates602

unsolvable equations). This extension does require ground confluence (as defined603

in Section 3.1). A new challenge is whether we can also prove that something is604

not a global inductive theorem, even if it is an inductive theorem.605

A second idea is to admit extensionality; that is, to allow a rule (or: induction606

rule) s x1 · · ·xn ≈ t x1 · · ·xn [φ] to be used to reduce a term C[sγ]. If we restrict607

constructors to have base-type arguments, we postulate that such a deduction608

rule is also sound in our setting (perhaps under additional restrictions like ground609

confluence). It could also be used in an alternative rewriting induction approach610

designed for proving extensional inductive theorems following [3].611

A very useful extension could be to weaken the termination requirement. In612

many cases, an obvious lemma cannot be used because the resulting induction613

rule would not be terminating. We postulate that, under reasonable restrictions,614

termination of such a rule is unnecessary if the rule is always followed by Deletion.615

Related, our current definitions only support finite data. Using coinduction616

rather than induction may allow us to consider systems with streams, and replace617

the termination requirement by one of productivity.618

We intend to implement rewriting induction in our tool Cora, which already619

supports (Oracle) termination. Fully automatic proof search could build on the620

ideas in [16], but will require more work on automatic strategies.621

Rewriting induction for higher-order constrained term rewriting systems 17

References622

1. Angelis, E.d., Fioravanti, F., Pettorossi, A., Proietti, M.: Relational verification623

through Horn clause transformation. In: Proc. SAS 16. LNPSE, vol. 9837, pp.624

147–196 (2016). https://doi.org/10.1007/978-3-662-53413-7_8625

2. Aoto, T., Nishida, N., Schöpf, J.: Equational theories and validity for logically626

constrained term rewriting. In: Proc. FSCD 24. LIPIcs, vol. 299, pp. 31:1–31:21627

(2024). https://doi.org/10.4230/LIPICS.FSCD.2024.31628

3. Aoto, T., Yamada, T., Chiba, Y.: Natural inductive theorems for higher-order629

rewriting. In: Proc. RTA 11. LIPIcs, vol. 10, pp. 107–121 (2011). https://doi.org/630

10.4230/LIPIcs.RTA.2011.107631

4. Aoto, T., Yamada, T., Toyama, Y.: Inductive theorems for higher-order rewriting.632

In: Proc. RTA 04. LNCS, vol. 3091, pp. 269–284 (2004). https://doi.org/10.1007/633

978-3-540-25979-4_19634

5. Chiba, Y., Aoto, T., Toyama, Y.: Program transformation templates for tupling635

based on term rewriting. IEICE TRANSACTIONS on Information and Systems636

E93-D(5), 963–973 (2010). https://doi.org/10.1587/transinf.E93.D.963637

6. Delmas, D., Miné, A.: Analysis of software patches using numerical abstract in-638

terpretation. In: Proc. SAS 19. LNPSE, vol. 11822, pp. 225–246 (2019). https:639

//doi.org/10.1007/978-3-030-32304-2_12640

7. Falke, S., Kapur, D.: Rewriting induction + linear arithmetic = decision procedure.641

In: Proc. IJCAR 12. LNAI, vol. 7364, pp. 241–255 (2012). https://doi.org/10.1007/642

978-3-642-31365-3_20643

8. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automat-644

ing regression verification. In: Proc. ASE 14. pp. 349–360. ACM (2014). https:645

//doi.org/10.1145/2642937.2642987646

9. Fuhs, C., Kop, C., Nishida, N.: Verifying procedural programs via constrained647

rewriting induction. ACM Transactions On Computational Logic (TOCL) 18(2),648

14:1–14:50 (2017). https://doi.org/10.1145/3060143649

10. Godlin, B., Strichman, O.: Inference rules for proving the equivalence of recur-650

sive procedures. Acta Informatica 45(6), 403–439 (2008). https://doi.org/10.1007/651

s00236-008-0075-2652

11. Guo, L., Hagens, K., Kop, C., Vale, D.: Higher-order constrained dependency pairs653

for (universal) computability. In: Proc. MFCS 24 (2024). https://doi.org/10.48550/654

arXiv.2406.19379, to Appear655

12. Guo, L., Kop, C.: Higher-order LCTRSs and their termination. In: Proc.656

ESOP 24. LNCS, vol. 14577, pp. 331–357 (2024). https://doi.org/10.1007/657

978-3-031-57267-8_13658

13. Huth, M., Ryan, M.D.: Modelling and reasoning about systems. Cambridge Uni-659

versity Press (2004). https://doi.org/10.1017/CBO9780511810275660

14. Koike, H., Toyama, Y.: Inductionless induction and rewriting induction. Com-661

puter Software 17(6), 509–520 (2000). https://doi.org/10.11309/jssst.17.509, (In662

Japanese)663

15. Kop, C., Nishida, N.: Term rewriting with logical constraints. In: Proc. FroCoS 13.664

LNAI, vol. 8152, pp. 343–358 (2013). https://doi.org/10.1007/978-3-642-40885-4_665

24666

16. Kop, C., Nishida, N.: ConsTrained Rewriting tooL. In: Proc. LPAR 15. LNCS,667

vol. 9450, pp. 549–557 (2015). https://doi.org/10.1007/978-3-662-48899-7_38668

17. Kop, C., Raamsdonk, F.v.: Dynamic dependency pairs for algebraic functional669

systems. LMCS 8(2), 1–51 (2012). https://doi.org/10.2168/LMCS-8(2:10)2012670

https://doi.org/10.1007/978-3-662-53413-7_8
https://doi.org/10.1007/978-3-662-53413-7_8
https://doi.org/10.4230/LIPICS.FSCD.2024.31
https://doi.org/10.4230/LIPICS.FSCD.2024.31
https://doi.org/10.4230/LIPIcs.RTA.2011.107
https://doi.org/10.4230/LIPIcs.RTA.2011.107
https://doi.org/10.4230/LIPIcs.RTA.2011.107
https://doi.org/10.4230/LIPIcs.RTA.2011.107
https://doi.org/10.4230/LIPIcs.RTA.2011.107
https://doi.org/10.4230/LIPIcs.RTA.2011.107
https://doi.org/10.1007/978-3-540-25979-4_19
https://doi.org/10.1007/978-3-540-25979-4_19
https://doi.org/10.1007/978-3-540-25979-4_19
https://doi.org/10.1007/978-3-540-25979-4_19
https://doi.org/10.1007/978-3-540-25979-4_19
https://doi.org/10.1007/978-3-540-25979-4_19
https://doi.org/10.1587/transinf.E93.D.963
https://doi.org/10.1587/transinf.E93.D.963
https://doi.org/10.1007/978-3-030-32304-2_12
https://doi.org/10.1007/978-3-030-32304-2_12
https://doi.org/10.1007/978-3-030-32304-2_12
https://doi.org/10.1007/978-3-030-32304-2_12
https://doi.org/10.1007/978-3-030-32304-2_12
https://doi.org/10.1007/978-3-030-32304-2_12
https://doi.org/10.1007/978-3-642-31365-3_20
https://doi.org/10.1007/978-3-642-31365-3_20
https://doi.org/10.1007/978-3-642-31365-3_20
https://doi.org/10.1007/978-3-642-31365-3_20
https://doi.org/10.1007/978-3-642-31365-3_20
https://doi.org/10.1007/978-3-642-31365-3_20
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/2642937.2642987
https://doi.org/10.1145/3060143
https://doi.org/10.1145/3060143
https://doi.org/10.1007/s00236-008-0075-2
https://doi.org/10.1007/s00236-008-0075-2
https://doi.org/10.1007/s00236-008-0075-2
https://doi.org/10.1007/s00236-008-0075-2
https://doi.org/10.1007/s00236-008-0075-2
https://doi.org/10.1007/s00236-008-0075-2
https://doi.org/10.48550/arXiv.2406.19379
https://doi.org/10.48550/arXiv.2406.19379
https://doi.org/10.48550/arXiv.2406.19379
https://doi.org/10.48550/arXiv.2406.19379
https://doi.org/10.48550/arXiv.2406.19379
https://doi.org/10.48550/arXiv.2406.19379
https://doi.org/10.1007/978-3-031-57267-8_13
https://doi.org/10.1007/978-3-031-57267-8_13
https://doi.org/10.1007/978-3-031-57267-8_13
https://doi.org/10.1007/978-3-031-57267-8_13
https://doi.org/10.1007/978-3-031-57267-8_13
https://doi.org/10.1007/978-3-031-57267-8_13
https://doi.org/10.1017/CBO9780511810275
https://doi.org/10.1017/CBO9780511810275
https://doi.org/10.11309/jssst.17.509
https://doi.org/10.11309/jssst.17.509
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-662-48899-7_38
https://doi.org/10.1007/978-3-662-48899-7_38
https://doi.org/10.2168/LMCS-8(2:10)2012
https://doi.org/10.2168/LMCS-8(2:10)2012

18 K. Hagens, C. Kop

18. Kusakari, K.: On proving termination of term rewriting systems with higher-order671

variables. IPSJ Transactions on Programming 42(7), 35–45 (2001), http://id.nii.672

ac.jp/1001/00016864/673

19. Nakabayashi, N., Nishida, N., Kusakari, K., Sakabe, T., Sakai, M.: Lemma gen-674

eration method in rewriting induction for constrained term rewriting systems.675

Computer Software 28(1), 173–189 (2010), https://www.trs.css.i.nagoya-u.ac.jp/676

crisys/nakabayashi10.pdf677

20. Nishida, N., Kojima, M., Kato, T.: On transforming imperative programs into log-678

ically constrained term rewrite systems via injective functions from configurations679

to terms. In: Proc. WPTE 22 (2022), https://wvvw.easychair.org/publications/680

preprint_download/DbM2681

21. Partush, N., Yahav, E.: Abstract semantic differencing via speculative correla-682

tion. In: Proc. OOPSLA 14. pp. 811–828. ACM (2014). https://doi.org/10.1145/683

2660193.2660245684

22. Reddy, U.: Term rewriting induction. In: Proc. CADE ’90. LNCS, vol. 449, pp.685

162–177 (1990). https://doi.org/10.1007/3-540-52885-7_86686

http://id.nii.ac.jp/1001/00016864/
http://id.nii.ac.jp/1001/00016864/
http://id.nii.ac.jp/1001/00016864/
https://www.trs.css.i.nagoya-u.ac.jp/crisys/nakabayashi10.pdf
https://www.trs.css.i.nagoya-u.ac.jp/crisys/nakabayashi10.pdf
https://www.trs.css.i.nagoya-u.ac.jp/crisys/nakabayashi10.pdf
https://wvvw.easychair.org/publications/preprint_download/DbM2
https://wvvw.easychair.org/publications/preprint_download/DbM2
https://wvvw.easychair.org/publications/preprint_download/DbM2
https://doi.org/10.1145/2660193.2660245
https://doi.org/10.1145/2660193.2660245
https://doi.org/10.1145/2660193.2660245
https://doi.org/10.1145/2660193.2660245
https://doi.org/10.1145/2660193.2660245
https://doi.org/10.1145/2660193.2660245
https://doi.org/10.1007/3-540-52885-7_86
https://doi.org/10.1007/3-540-52885-7_86

Rewriting induction for higher-order constrained term rewriting systems 19

A Proofs for Section 4687

This appendix is split over three parts:688

– In Appendix A.1, we prove the claim made in the text that Alter may be689

applied in Scenarios I–III (on page 11).690

– Appendix A.2 and Appendix A.3 together provide the proof of Theorem 1.691

• In Appendix A.2, we explain the proof strategy, which relies on an in-692

variant on E and H being preserved throughout the proof process.693

• In Appendix A.3 we show that this invariant is indeed preserved in every694

derivation step.695

The proof of Theorem 1 is quite elaborate, but not very new: the proof barely696

differs from its first-order counterpart in [9]. Nevertheless, we supply it here to697

show that indeed the proof goes through.698

A.1 Alter scenarios699

In Section 4.3 we claimed that we often use Alter in the scenarios I, II and III.700

Here, we will prove that each of them satisfies the requirements of the Alter rule.701

Lemma 3 (Scenario I: replacing a constraint by an equi-satisfiable702

one). Let s ≈ t [φ] and s ≈ t [ψ] be equations such that (∃x⃗.φ) ⇐⇒ (∃y⃗.ψ) is703

valid, where {x⃗} = Var(φ)\(Var(s)∪Var(t)) and {y⃗} = Var(ψ)\(Var(s)∪Var(t)).704

Then705

(1). For every gsc substitution γ that respects s ≈ t [φ] there is a substitution δ706

that respects s ≈ t [ψ] such that sγ = sδ and tγ = tδ.707

(2). For every gsc substitution δ that respects s ≈ t [ψ] there is a substitution γ708

that respects s ≈ t [φ] such that sγ = sδ and tγ = tδ.709

Proof. The cases are symmetric, so we only show (1).710

Let z⃗ = (Var(φ)∪Var(ψ))\{x⃗, y⃗}, and write x⃗ = (x1, . . . , xn), y⃗ = (y1, . . . , ym)711

and z⃗ = (z1, . . . , zk). Validity of ∀z⃗.((∃x⃗.φ) ⇐⇒ (∃y⃗.ψ)) implies validity of712

the one-way implication ∀z⃗.((∃x⃗.φ) =⇒ (∃y⃗.ψ)). This means that for all values713

c1, . . . , ck of the right types: if there exist values a1, . . . , an such that φ[x1 :=714

a1, . . . , xn := an, z1 := c1, . . . , zk := ck] is valid, then there exist values b1, . . . , bm715

such that ψ[y1 := b1, . . . , ym := bm, z1 := c1, . . . , zk := ck] is valid.716

Let γ be a gsc substitution that respects s ≈ t [φ], i.e. γ(Var(φ)) ⊆ Val,717

JφγK = ⊤ and Var(s) ∪ Var(t) ⊆ dom(γ). Let ai := γ(xi), and for 1 ≤ j ≤ k:718

if zj ∈ V(φ) let cj := γ(zj), otherwise let cj be an arbitrary value in Itypeof (zj)719

(since we assumed that the sets Iι are non-empty, this can always be done).720

Moreover, let η := [w := γ(w) | w ∈ (Var(s) ∪ Var(t)) \ Var(φ)]. Then dom(η) ∩721

{z⃗} = ∅.722

Now, since γ respects the equation, φ[x1 := a1, . . . , xn := an, z1 := c1, . . . ,723

zk := ck] is valid, and therefore by assumption we find values y1 := b1, . . . , ym :=724

bm such that φ[y1 := b1, . . . , ym := bm, z1 := c1, . . . , zk := ck] is valid. Since725

y⃗ ∩ (Var(s) ∪ Var(t)) = ∅, we can define δ := η ∪ [y⃗ := b⃗, z⃗ := c⃗].726

20 K. Hagens, C. Kop

Then clearly δ(Var(ψ)) ⊆ {⃗b, c⃗} ⊆ Val, and JψδK = Jψ[y⃗ := b⃗, z⃗ := c⃗]K = ⊤.
All variables in s and t are either in {z⃗} or in dom(η), so δ respects s ≈ t [ψ], and
maps each variable w ∈ Var(s)∪ Var(t) to γ(w). Hence, sγ = sδ and γ = tδ. ⊓⊔

Lemma 4 (Scenario II: replacing variables/values by equivalent ones).727

Let s ≈ t [φ] and u ≈ t [φ] be equations such that s = C[x1, . . . , xn], u =728

C[y1, . . . , yn] and all xi, yi are values or variables in Var(φ). Assume that φ =⇒729 ∧n
i=1 xi = yi is valid. Then730

(1). For every gsc substitution γ that respects s ≈ t [φ] there exists a substitution731

δ that respects u ≈ t [φ] such that sγ = uδ and tγ = tδ.732

(2). For every gsc substitution δ that respects u ≈ t [φ] there exists a substitution733

γ that respects s ≈ t [φ] such that sγ = uδ and tγ = tδ.734

Proof. The cases are symmetric, so we only show (1).735

Let γ be a gsc substitution that respects s ≈ t [φ], i.e. γ(Var(φ)) ⊆ Val,
JφγK = ⊤ and Var(s) ∪ Var(t) ⊆ dom(γ). Since all xi, yi are values or variables
in φ, by definition of respects we know that each xiγ and uiγ is a value. By
validity of φ =⇒

∧n
i=1 xi = yi, and the fact that JφγK = ⊤, we obtain that

Jxiγ = yiγK = ⊤ for each i, which can only hold if they are the same values
since the relation between values and the underlying set is one-to-one. Hence,
xiγ = yiγ, so sγ = uγ. We are done by choosing δ = γ. ⊓⊔

Lemma 5 (Scenario III: adding safe variables to the constraint). Let736

s ≈ t [φ] and s ≈ t [ψ] be equations such that ψ = φ∧(x1 = x1)∧· · ·∧(xn = xn),737

where x1, . . . , xn are variables in s, u that do not occur in φ, but whose type is a738

theory sort ι ∈ Stheory such that no constructors of a type σ1 → . . . → σm → ι739

exist other than values. Then740

(1). For every gsc substitution γ that respects s ≈ t [φ] there exists a substitution741

δ that respects s ≈ t [ψ] such that sγ = sδ and tγ = tδ.742

(2). For every gsc substitution δ that respects s ≈ t [ψ] there exists a substitution743

γ that respects s ≈ t [φ] such that sγ = sδ and tγ = tδ.744

Proof. For (1), let γ be a gsc substitution that respects s ≈ t [φ], i.e. γ(Var(φ)) ⊆745

Val, JφγK = ⊤ and Var(s) ∪ Var(t) ⊆ dom(γ). Consider γ(xi). Because xi ∈746

dom(γ) and γ is a gsc substitution, γ(si) must be a gsc term; having base type,747

it must have a form c u1 · · ·uk with c a constructor. Since there are no non-value748

constructors with a theory sort as output sort, we can only have k = 0 and c is749

a value. But then γ also respects xi = xi. Hence, we can choose δ := γ.750

For (2), we observe that any gsc substitution that respects ψ clearly also
respects φ, so here too we can choose δ := γ. ⊓⊔

A.2 Proof strategy751

Next, we consider the proof outline of Theorem 1. In the remainder of Ap-752

pendix A, we fix a quasi-reductive, terminating LCSTRS L (with rules R), and753

we assume that every equation in E is entirely over L.754

Rewriting induction for higher-order constrained term rewriting systems 21

First, for a set of equations E , we define the symmetric relation↔E as follows:755

for any context C over L we define756

C[sγ]↔E C[tγ] if s ≈ t [φ] ∈ E or t ≈ s [φ] ∈ E and γ respects φ

Reasoning over inductive theorems is really reasoning about the inclusion of757

↔E in ↔∗
R:758

Lemma 6. Suppose that ↔E ⊆ ↔∗
R on ground terms over L. Then every equa-759

tion in E is a higher-order inductive theorem of L.760

Proof. Let s ≈ t [φ] ∈ E and γ a ground substitution over L which respects this
equation. We need to prove that sγ ↔∗

R tγ. Since sγ and tγ are ground over L,
and satisfy sγ ↔E tγ, we use our assumption to conclude sγ ↔∗

R tγ. ⊓⊔

We also let E denote the parallel application of zero or more ↔E steps,761

and additionally define:762

uγ ↔root,semi
E vγ if u ≈ v [φ] ∈ E and γ a gsc substitution over L that respects φ

Towards a proof of Theorem 1, we now claim that the following lemma holds:763

Lemma 7 (Main lemma). Suppose that (E ,H) ⊢ (E ′,H′). Then764

(1) ↔root,semi
E\E′ ⊆ →∗

R∪H′ · E′ · ←∗
R∪H′765

(2) →R∪H ⊆ →R · →∗
R∪H · E · ←∗

R∪H on ground terms over L, implies766

→R∪H′ ⊆ →R · →∗
R∪H′ · E′ · ←∗

R∪H′ on ground terms over L.767

This lemma will be proved in Appendix A.3. For now, we will explicitly768

assume that it holds. We first note:769

Lemma 8. Suppose ↔root,semi
E\E′ ⊆ →∗

R∪H′ · E′ · ←∗
R∪H′ .770

Then E ⊆ →∗
R∪H′ · E′ · ←∗

R∪H′ on ground terms over L.771

Proof. Suppose ↔root,semi
E\E′ ⊆ →∗

R∪H′ · E′ · ←∗
R∪H′ , and let s, t be ground772

terms such that s E t. That is, s = C[s1γ1, . . . , snγn] and t = C[t1γ1, . . . , tnγn]773

where, for each 1 ≤ i ≤ n, si ≈ ti [φi] ∈ E and γi respects φi. Consider some i.774

If si ≈ ti [φi] ∈ E ′, then clearly siγ ↔∗
E′ tiγ, so also siγ →∗

R∪H′ · E′775

· ←∗
R∪H′ . Otherwise, si ≈ ti [φi] ∈ E \ E ′. Since we have assumed that L is776

terminating, we can define γ↓i = [x := γi(x)↓R | x ∈ dom(γi)]; since L is quasi-777

reductive, γ↓i is a gsc substitution. Hence, by the assumption on ↔root,semi
E\E′ , we778

have: siγi →∗
R siγ

↓
i →∗

R∪H′ · E′ · ←∗
R∪H′ tiγ

↓
i ←∗

R tiγ.779

We complete by sequentializing all→R∪H reductions in s, and doing all E′

steps in parallel. ⊓⊔

We use this to see:780

Lemma 9. Suppose that (E0, ∅) ⊢∗ (En,Hn), and assume that Lemma 7 holds781

for any deduction step (Ei−1,Hi−1) ⊢ (Ei,Hi) in this deduction sequence. Then782

22 K. Hagens, C. Kop

(1) E0
⊆ →∗

R∪Hn
· En

· ←∗
R∪Hn

783

(2) →R∪Hn
⊆ →R · →∗

R∪Hn
· En

· ←∗
R∪Hn

on ground terms over L.784

Proof. We prove both statements by induction on n, using that for all i ∈785

{0, . . . , n− 1}: Hi ⊆ Hi+1. (This is a property of rewriting induction.)786

If n = 0, then we are immediately done, since En = E0 and →R∪Hn
= →R787

(and because a parallel step E0
is allowed to be empty).788

Now, assume n > 0 and the lemma holds for n − 1. So we have E0
⊆

→∗
R∪Hn−1

· En−1
· ←∗

R∪Hn−1
. By the combination of Lemma 7 and Lemma 8:

En−1
⊆ →∗

R∪Hn
· En

· ←∗
R∪Hn

. Therefore E0
⊆ →∗

R∪Hn−1
·(→∗

R∪Hn

· En
· ←∗

R∪Hn
)· ←∗

R∪Hn−1
. We complete (1) because →∗

R∪Hn−1
· →∗

R∪Hn
is

included in→∗
R∪Hn

. As for (2): this follows immediately by induction hypothesis
(2) and Lemma 7.(2). ⊓⊔

We will also use the following property from the literature, on arbitrary789

relations→1 and→2 (we include a proof since the original proof is in Japanese):790

Lemma 10 ([14, Lemma 3.4]). Let →1 ⊆ →2 be binary relations with →2791

well-founded and →2 ⊆ →1 · →∗
2 · ↔∗

1 · ←∗
2. Then ↔∗

1 = ↔∗
2.792

Proof. The direction ↔∗
1 ⊆ ↔∗

2 is implied by →1 ⊆ →2. To prove ↔∗
2 ⊆ ↔∗

1 it793

suffices to prove→2 ⊆ ↔∗
1. So assume s→2 t. We use well-founded induction on794

s→2 to show s↔∗
1 t. First, we use our assumption: there exist terms a1, . . . , an795

and b1, . . . bm such that796

s→1 a1 →2 a2 →2 . . .→2 an ↔∗
1 bm ←2 . . .←2 b2 ←2 b1 = t

Since →1 ⊆ →2, we see that s →+
2 ai for all 1 ≤ i ≤ n, and ai →2 ai+1

for all 1 ≤ i < n. So by induction hypothesis we can conclude ai ↔∗
1 ai+1

for all 1 ≤ i < n. By assumption we have s →2 t, hence (again by induction
hypothesis) bi ↔∗

1 bi+1 for all 1 ≤ i < m. This gives us the desired sequence
s→1 a1 ↔∗

1 a2 ↔∗
1 . . .↔∗

1 an ↔∗
1 bm ↔∗

1 . . .↔∗
1 b2 ↔∗

1 b1 = t. ⊓⊔

With these preparations, we can now prove Theorem 1 (conditional on Lemma 7):797

Theorem 1 – conditionally. Let E be a set of equations. Assume that, by798

higher-order rewriting induction, (E , ∅) ⊢∗ (∅,H), for some set H, and Lemma 7799

holds for every single step that occurs in this deduction sequence. Then every800

equation in E is a higher-order inductive theorem of L.801

Proof. We use Lemma 9 with E0 = E , En = ∅ and Hn = H to obtain802

1. E ⊆ →∗
R∪H · ←∗

R∪H on ground terms over L803

2. →R∪H ⊆ →R · →∗
R∪H · ←∗

R∪H on ground terms over L.804

Combine (2) with Lemma 10 to conclude ↔∗
R = ↔∗

R∪H on ground terms over805

L (take →1:= →R and →2:= →R∪H). Then use (1) to conclude that:806

↔E ⊆ E ⊆ →∗
R∪H · ←∗

R∪H ⊆ ↔∗
R∪H · ↔∗

R∪H = ↔∗
R∪H = ↔∗

R

on ground terms over L. Finally, use Lemma 6 to conclude Theorem 1. ⊓⊔

Rewriting induction for higher-order constrained term rewriting systems 23

A.3 Soundness proof807

It remains to be seen that Lemma 7 holds for every single-step deduction. Note808

that whenever H = H′ (as is the case for every deduction rule other than Ex-809

pansion), we only need to prove (1), because then (2) is implied by (1).810

Hence, in all cases other than Expansion, we only have to show that811

↔root,semi
E\E′ ⊆ →∗

R∪H · E′ · ←∗
R∪H

We will start with these cases.812

Simplification. To prove correctness of the Simplification rule, we introduce813

the following helper lemma.814

Lemma 11. Let L = (Σ,V,R) be terminating and suppose that X ⊇ R is815

terminating on T (Σ,V). Assume an equation C[ℓδ] ≈ t [ψ], for some rule816

ℓ → r [φ] ∈ X ∪ Rcalc, context C over L and substitution δ over L such that817

δ(LV ar(ℓ→ r [φ])) ⊆ Val ∪ Var(ψ) and ψ =⇒ φδ valid. Then for any substitu-818

tion γ over L which respects ψ we have C[ℓδ]γ →X C[rδ]γ.819

Proof. Let γ be a substitution over L respecting ψ and define η := γ ◦ δ. We
check that C[ℓδ]γ →X C[rδ]γ with substitution η and rule ℓ→ r [φ].
Let C ′ = Cγ. Then C[ℓδ]γ = C ′[ℓδγ] = C ′[ℓη] and C[rδ]γ = C ′[rδγ] = C ′[rη].
Therefore, by definition of the rewrite relation, it suffices to show that η re-
spects ℓ → r [φ], i.e. η(LV ar(ℓ → r [φ])) ⊆ Val and JφηK = ⊤. Now, since
γ respects ψ we have γ(Var(ψ)) ⊆ Val and JψγK = ⊤. Therefore η(LV ar(ℓ →
r [φ])) = γ(δ(LV ar(ℓ→ r [φ]))) ⊆ γ(Val∪Var(ψ)) = γ(Val)∪γ(Var(ψ)) = Val∪
γ(Var(ψ)) = Val and, because of ψ =⇒ φδ, we have that ⊤ = J(φδ)γK = JφηK.

⊓⊔

Lemma 12. Assume that (E ⊎ {C[ℓδ] ≈ t [ψ]},H) ⊢ (E ∪ {C[rδ] ≈ t [ψ]},H)820

by (Simplification), using the rule ℓ → r [φ]. Then ↔root,semi
{C[ℓδ]≈t [ψ]} ⊆ →

∗
R∪H821

· E∪{C[rδ]≈t [ψ]} · ←∗
R∪H.822

Proof. Suppose C[ℓδ]γ ↔root,semi
{C[ℓδ]≈t [ψ]} tγ, with γ a gsc substitution over L that

respects ψ. Then, by definition of Simplification, we have δ(LV ar(ℓ→ r [φ])) ⊆
Val ∪ Var(ψ) and ψ =⇒ φδ. Now, Lemma 11 (take X = R ∪ H) guarantees
C[ℓδ]γ →R∪H C[rδ]γ. Therefore, C[ℓδ]γ →R∪H C[rδ]γ {C[rδ]≈t [ψ]} tγ. ⊓⊔

Generalize and Alter. Since Alter is a special case of Generalize, we can823

handle both derivation rules at once.824

Lemma 13. If (E ⊎ {s ≈ t [φ]},H) ⊢ (E ∪ {u ≈ v [ψ]},H) by (Generalize) or825

(Alter), then ↔root,semi
{s≈t [φ]} ⊆ →

∗
R∪H · E∪{u≈v [ψ]} · ←∗

R∪H.826

Proof. Suppose sγ ↔root,semi
{s≈t [φ]} tγ, with γ a gsc substitution over L that respects

φ. Then, by definition of the Generalize and Alter rules, there exists a substitu-
tion δ that respects u ≈ v [ψ] such that sγ = uδ and tγ = vδ. Since δ respects
ψ we have uδ ↔{u≈v [ψ]} vδ. Therefore, sγ ↔{u≈v [ψ]} tγ. ⊓⊔

24 K. Hagens, C. Kop

Deletion.827

Lemma 14. If (E ⊎ {s ≈ t [φ]},H) ⊢ (E ,H) by (Deletion) then ↔root,semi
{s≈t [φ]} ⊆828

→∗
R∪H · E · ←∗

R∪H.829

Proof. Assume sγ ↔root,semi
{s≈t [φ]} tγ, with γ a gsc substitution over L that respects φ.

Then necessarily s = t, because in the other case (the case φ being unsatisfiable)
there would not exist such a substitution. But then the result trivially holds. ⊓⊔

Semi-constructor.830

Lemma 15. If
(
E ⊎ {c s⃗ ≈ c t⃗ [φ]},H

)
⊢ (E ∪ {si ≈ ti [φ] | 1 ≤ i ≤ n} ,H) by831

(Semi-constructor) then ↔root,semi

{c s⃗ ≈ c t⃗ [φ]}⊆ →
∗
R∪H · E∪{si≈ti [φ]|1≤i≤n} ·832

←∗
R∪H.833

Proof. Suppose that (c s⃗)γ ↔root,semi

{c s⃗ ≈ c t⃗ [φ]} (c t⃗)γ, with γ a gsc substitution over
L that respects φ. By definition we have siγ ↔E∪{si≈ti [φ]|1≤i≤n} tiγ. As all si
occur in parallel, it follows that (c s⃗)γ E∪{si≈ti [φ]|1≤i≤n} (c t⃗)γ. ⊓⊔

Expansion. Since Expansion adds a rewrite rule toH, here part (2) of Lemma 7834

is not automatically implied by part (1). Hence, we have to prove both state-835

ments. We start with proving (1), but first we introduce two helper lemmas.836

Lemma 16. Let f s1 · · · sn be a ground term over L such that f ∈ D, n ≥837

ar(f) = k and every si ∈ SCT L. Then there is a rule ℓ → r [ψ] ∈ R and a838

substitution δ over L respecting this rule such that f s1 · · · sk = lδ.839

Proof. Quasi-reductivity of L implies that f s1 · · · sn reduces (n ≥ ar(f) so it
is not a semi-constructor term). Since every si is a semi-constructor term, the
only possible way this reduction can happen is at the root position. So there is
a rule ℓ → r [ψ] ∈ R and a substitution δ over L respecting this rule such that
f s1 · · · sk = ℓδ. ⊓⊔

Lemma 17. Let s ≈ t [φ] be an equation such that s|p = f s1 · · · sn with f ∈840

D, n ≥ ar(f) and every si a semi-constructor term over L. Then for any gsc841

substitution γ over L which respects s ≈ t [φ] we have842

sγ →R · E∪Expd(s≈t [φ],p) tγ

Proof. Let γ be a gsc substitution over L which respects φ. By Lemma 16, s|pγ843

reduces at root position with some rule ℓ → r [ψ] ∈ R and substitution δ over844

L respecting ψ. We can assume the variables in ℓ → r [ψ] are named so as not845

to overlap with the variables in the equation. So then we can let δ′ := γ ∪ δ and846

have sγ = sδ′ = s[ℓ sk+1 · · · sn]pδ′ and tγ = tδ′, where δ′ respects both φ and847

ψ. And since δ′ respects ψ, we have s[ℓ sk+1 · · · sn]pδ′ →R s[r sk+1 · · · sn]pδ′.848

Rewriting induction for higher-order constrained term rewriting systems 25

Now, since f s1 · · · sk and ℓ are unifiable with unifier δ′, there is also a
most general unifier η; “most general” implies that δ′ = ηζ for some substi-
tution ζ. Hence, Expd(s ≈ t [φ], p) includes an equation s[r sk+1 · · · sn]pη ≈ tη.
Conclude sγ = s[l sk+1 · · · sn]pδ′ →R s[r sk+1 · · · sn]pδ′ = s[r sk+1 · · · sn]pηζ

Expd(s≈t [φ],p) tηζ = tγ. ⊓⊔

Now part (1) of Lemma 7 is proved by the following:849

Lemma 18.850

If (E ⊎ {s ≈ t [φ]},H) ⊢ (E ⊎ Expd(s ≈ t [φ], p),H ∪ {s→ t [φ]}) by (Expan-851

sion) then↔root,semi
{s≈t [φ]} ⊆→

∗
R∪H∪{s→t [φ]} · E⊎Expd(s≈t [φ],p) · ←∗

R∪H∪{s→t [φ]}.852

Proof. Suppose sγ ↔root,semi
{s≈t [φ]} tγ, with γ a gsc substitution over L that respects

φ. By Lemma 17 we have sγ →R · Exp(s≈t [φ],p) tγ. ⊓⊔

And part (2) of Lemma 7 is proved by the following:853

Lemma 19.854

Suppose (E ⊎ {s ≈ t [φ]},H) ⊢ (E ∪ Expd(s ≈ t [φ], p),H ∪ {s→ t [φ]}) by (Ex-855

pansion), and→R∪H ⊆ →R · →∗
R∪H · E∪{s≈t [φ]} · ←∗

R∪H on ground terms856

over L. Then:857

→R∪H∪{s→t [φ]} ⊆ →R · →∗
R∪H∪{s→t [φ]} ·

E∪Expd(s≈t [φ],p) · ←∗
R∪H∪{s→t [φ]}

holds on ground terms over L.858

Proof. Suppose→R∪H ⊆→R · →∗
R∪H · E∪{s≈t [φ]} · ←∗

R∪H on ground terms859

over L. Then by Lemma 18 and Lemma 8:860

→R∪H ⊆ →R · →∗
R∪H ·

(
→∗

R∪H∪{s→t [φ]} ·

E∪Expd(s≈t [φ],p) · ←∗
R∪H∪{s→t [φ]}

)
· ←∗

R∪H

Or equivalently861

→R∪H ⊆ →R · →∗
R∪H∪{s→t [φ]} · E∪Expd(s≈t [φ],p) · ←∗

R∪H∪{s→t [φ]}

Therefore, it suffices to show that on ground terms over L we have862

→{s→t [φ]} ⊆ →R · →∗
R∪H∪{s→t [φ]} · E∪Expd(s≈t [φ],p) · ←∗

R∪H∪{s→t [φ]}

So suppose C[sγ], C[tγ] are ground terms over L such that C[sγ]→{s→t [φ]}863

C[tγ], for some ground substitution γ over L that respects ℓ → r [φ]. Then γ↓864

with γ↓(x) = γ(x)↓R for all x ∈ dom(γ) is a gsc substitution over L, so by865

Lemma 17 we have sδ →R · Exp(s≈t [φ],p) tδ. Therefore866

C[sγ]→∗
R C[sδ]→R · Exp(s≈t [φ],p) C[tδ]←∗

R C[tγ]

⊓⊔

26 K. Hagens, C. Kop

B Proofs for Section 5867

Although there are no lemmas or theorems in Section 5, we did claim in the text868

that strong quasi-reductivity implies general quasi-reductivity. In this appendix,869

we prove that statement.870

We first introduce a helper function µ, that replaces every higher-order sub-871

term in a ground semi-constructor term by a variable.872

Definition 9 (µ). For a ground semi-constructor term s, choose variables Fp873

for every p ∈ Pos(s) with s|p of higher type. Then, let µ(s) := µϵ(s), where for874

subterms t of s at position p, we let:875

– if t has an arrow type, µp(t) := Fp876

– if t has base type, then t necessarily has a shape c t1 · · · tm with c a construc-877

tor, so we let µp(t) := c µp·1(t1) · · ·µp·m(tm)878

Then clearly µ(s) is a constructor term with only higher-order variables, and879

moreover it is linear (no variable occurs more than once), and the only subterms880

of higher type are variables. We clearly have the property: µ(s)[Fp := s|p | p ∈881

Pos(s)∧s|p has a higher type] = s. With this, we easily prove our desired result.882

Lemma 20. Any strong quasi-reductive LCSTRS is quasi-reductive.883

Proof. Suppose an LCSTRS L = (Σ,R) is strong quasi-reductive, and towards
a contradiction, suppose s ∈ T (Σ, ∅) is irreducible but not a semi-constructor
term. This can only be the case if s has a subterm f s1 · · · sn for some n ≥ ar(f),
where f ∈ D and all si are semi-constructor terms, but f s1 · · · sn does not reduce.
However, by strong quasi-reductivity, f µ1(s1) · · ·µn(sn) does reduce! But then
(f µ1(s1) · · ·µn(sn))[Fp := s|p | p ∈ Pos(s) ∧ s|p has higher type] = f s1 · · · sn
must also reduce. This gives the required contradiction. ⊓⊔

C Proofs for Section 6884

C.1 Oracle extensions885

Towards a proof of lemma 2, we show how an Oracle extension can be constructed886

from an arbitrary terminating quasi-reductive natural extension.887

Construction 1 Let L be an LCSTRS and L′ be a natural extension of L. Let888

P =


(f v1 · · · vm, w) where

f ∈ Σ′

f is a defined or calculation symbol in L′

typeof ′(f) = σ1 → . . .→ σm → ι (ι ∈ S ′)
v1, . . . , vm, w are ground terms
f v1 · · · vm →+

R′ w in L′

w is a normal form in L′


Moreover, let:889

Rewriting induction for higher-order constrained term rewriting systems 27

– SQ = S ′ and VQ = V ′
890

– SQtheory = Stheory and ΣQ
theory = Σtheory and IQ = I and J·KQ = J·K891

(so we use the theory of the original signature, not the extension)892

– ΣQ
terms = Σterms ∪ {f ′ | f ∈ Σ′

terms \ C} (so there is a symbol f ′ for each893

f ∈ Σ′
terms that is not a constructor in the original LCSTRS L)894

– typeof Q(x) = typeof ′(x) for x ∈ V ′;895

typeof Q(f) = typeof ′(f) = typeof (f) for f ∈ Σterms; and896

typeof Q(f ′) = typeof ′(f) for f ∈ Σ′
terms \ C897

For a term s ∈ T (ΣQ,VQ), we let ζ(s) ∈ T (Σ′,V ′) be the term that is obtained898

by replacing each f ′ by the corresponding f. For t ∈ T (Σ′,V ′) or in T (ΣQ,VQ),899

we let χ(t) ∈ T (ΣQ,VQ) be the term obtained by replacing each f that occurs900

in Σ′
terms \ C by f ′ (note that all elements of C are in ΣQ, so leaving them901

unchanged does not cause problems). Note that ζ(χ(t)) = t if t ∈ T (Σ′,V ′), and902

χ(ζ(s)) = χ(s) for s ∈ T (ΣQ,VQ) We define:903

Rorac =

{
f ′ s1 · · · sm → χ(w) where s1, . . . , sm, w ∈ T (ΣQ, ∅)

(f ζ(s1) · · · ζ(sm), w) ∈ P

}
The oracle variant of L′ is the LCSTRS Qorac generated from SQ,VQ,SQtheory,904

ΣQ
theory, IQ, J·KQ, Σ

Q
terms, typeof

Q and rules R∪Rorac.905

We can now make several observations:906

Lemma 21. Suppose L′ is terminating and quasi-reductive. Then the oracle907

variant of L′ is also a natural extension of L.908

Proof. By definition, all inclusions are satisfied.909

The set Rorac only defines symbols f ′, which do not occur in L.910

For all symbols g :: σ1 → . . . → σm → ι, ζ(g) is a function symbol in L′, so911

for 1 ≤ i ≤ m we have that σi is inhabited in L′; but if u :: σi is a ground term912

in L then χ(u) is a ground term of type σi in Qorac.913

Finally, if c :: σ1 → . . . → σm → ι is a constructor of Qorac, there are three914

possibilities:915

– If c occurs in Σterms, then c is also a constructor wrt L.916

– If c = f ′ for some f ∈ Σ′
terms \ C and f is a constructor of Σ′

terms, then ι917

cannot occur in S because L′ is a natural extension of L.918

– Finally, if c = f ′ for some f ∈ Σ′
terms \ C that is not a constructor of Σ′

terms,
then we obtain a contradiction, as f ′ cannot be a constructor of Rorac. To see
this, note that by the assumption on inhabitance, there exist ground terms
s1 :: σ1, . . . , sm :: σm, and by quasi-reductivity of L′, the term f s1 · · · sm
must reduce. By termination, it has a normal form w, so (f s1 · · · sm, w) ∈ P,
and therefore f ′ χ(s1) · · ·χ(sm) → χ(w) is a rule of Rorac. Hence, f ′ is a
defined symbol of Rorac, giving the required contradiction. ⊓⊔

Lemma 22. If s→R∪Rorac
t in Qorac (s, t ground), then ζ(s)→+

R′ ζ(t) in L′.919

28 K. Hagens, C. Kop

Proof. If s→R∪Rorac
t, then s = C[s′], t = C[t′], and one of the following holds:920

– s′ = ℓγ and t′ = rγ for some ℓ→ r [φ] ∈ R and substitution γ that respects921

this rule. Then since the rules of R do not use any of the copied symbols922

f ′, we have ζ(s′) = ℓγζ and ζ(t′) = rγζ , where γζ(x) = ζ(γ(x)). And since923

ζ(v) = v for any value v (as values are in ΣQ
theory = Σtheory), we have that924

γζ also respects ℓ→ r [φ]. Thus, ζ(s′) = ℓγζ →R rγζ = ζ(t′) in L′.925

– s′ → t′ ∈ Rorac, so P contains a pair (ζ(s′), w) with t′ = χ(w), which implies926

w = ζ(t′). By definition of P, ζ(s′)→+
R′ ζ(t′).927

– s′ = f v1 · · · vm for f :: ι1 → . . . → ιm → κ a calculation symbol and all vi928

values, and t′ is the value of this theory term; since ΣQ
theory = Σtheory ⊆929

Σ′
theory, we have ζ(s′) = s′ →R t′ = ζ(t′) by a calculation rule.930

In all cases, we immediately obtain ζ(s) = ζ(C)[ζ(s′)]→+
R′ ζ(C)[ζ(t′)] = ζ(t).

⊓⊔

Corollary 1. If L′ is terminating, so is Qorac.931

Lemma 23. If L is strong quasi-reductive and L′ is both terminating and quasi-932

reductive, then Qorac is quasi-reductive.933

Proof. We prove by induction on the size of a ground term s in Qorac: if s does934

not reduce in Qorac, then s is a semi-constructor term. We can always denote935

s = g s1 · · · sn with g :: σ1 → . . . → σm → ι (m ≥ n, ι ∈ S ′). If s does not936

reduce, then neither do its arguments si, so by the induction hypothesis, these937

are semi-constructor terms. We consider the possibilities:938

– If g is a constructor symbol in R∪Rorac, then we are immediately done.939

– If g is defined in Rorac but n < m then we are done, since all left-hand sides940

of rules in Rorac are maximally applied.941

– If g is defined in Rorac and n = m, then g = f ′ for some defined or calcu-942

lation symbol f ∈ L′. Either way, note that ζ(s) = f ζ(s1) · · · ζ(sn) is not943

a semi-constructor term in L′, so by quasi-reductivity of L′ it reduces; by944

termination there is a normal form w. But then s→ χ(w) ∈ Rorac, so s must945

reduce.946

– If g is an undefined calculation symbol, then we are immediately done if947

n < m. If n = m, then note that g ∈ ΣQ
theory = Σtheory, so ζ(s) =948

g ζ(s1) · · · ζ(sn). By definition of calculation symbol, the arguments of g949

all have a theory sort, so for 1 ≤ i ≤ m, si has a form c t1 · · · tl with c a950

constructor symbol in Qorac (since si is a ground semi-constructor term of951

base type), so ζ(si) = ζ(c) ζ(t1) · · · ζ(tl).952

We claim (**) that ζ(c) is a constructor in L′, which means that any reduct953

of ζ(si) still has ζ(c) as root symbol. Since R′
g = Rg (a natural extension954

cannot add cases to a defined symbol or calculation of L), there are no955

rules in R′ to reduce g (ζ(s1) ↓R′) · · · (ζ(sm) ↓R′) and yet it is not a semi-956

constructor term; which means that the calculation rule must apply, so ζ(c)957

can only be a value. But if ζ(c) is a value, then c is a value, so we see that958

all si are values. Hence, s = g s1 · · · sm reduces (using a calculation rule).959

Rewriting induction for higher-order constrained term rewriting systems 29

To prove (**), suppose that ζ(c) is a calculation symbol or defined symbol;960

as ζ(si) has base type, it is clearly not a semi-constructor term, so ζ(si)961

must reduce by quasi-reductivity; and due to the termination requirement962

we know that (ζ(si), w) ∈ P for some w, and hence that c is a defined symbol963

in Rorac—and therefore si cannot be a semi-constructor term in Qorac.964

– Finally, if g is defined in R, then we are done if n < ar(g). If n ≥ ar(g),965

then consider µζ(s) = g µ(ζ(s1)) · · ·µ(ζ(sn)). The sorts occurring in the966

argument types of g are all in S, as are the sorts occurring in the argument967

types of any constructor of L; therefore, µ(ζ(si)) ∈ T (Σ,V) for all i—and968

µ(ζ(si)) is a CHV term.969

Now observe that for constructors c in Σterms, there is no marked version970

c′; hence, µ(si) = µ(ζ(si)), and si = µ(si)[Fp := si|p | p ∈ Pos(si) ∧971

si|p has higher type].972

By strong quasi-reductivity, there is a rule inR that reduces g µ(s1) · · ·µ(sn)
at the head. But then the same rule also reduces its instance g s1 · · · sn in
Qorac. ⊓⊔

Lemma 24. Suppose L′ is terminating and quasi-reductive. Then the oracle973

variant of L′ is an Oracle extension of L.974

Proof. By Lemma 21, it is a natural extension. By Corollary 1, it is terminating.975

By Lemma 23, it is quasi-reductive.976

Clearly all rules in Rorac have a shape f ′ s1 · · · sm → χ(w) with f ′ a defined
symbol of Rorac and all si and χ(w) ground. By definition of χ, the only symbols
in χ(w) are constructors and symbols f ′, so not defined symbols of L. Since w
is a ground normal form, by quasi-reductivity it is a semi-constructor term, and
since ar(f) = arQ(f) for f ∈ Σterms, and ar(f) ≤ arQ(f ′) for f ∈ Σ′

terms \ C, this
means χ(w) is a semi-constructor term for Q. ⊓⊔

Lemma 25. Let s ≈ t [φ] be an equation over L, and γ a ground substitution977

over L′ that respects this equation. Then γχ also respects the equation, and if978

sγχ ↔∗
R∪Rorac

tγχ, then sγ ↔∗
R′ tγ.979

Proof. For γ to respect the equation, three things should be satisfied:980

– The domain of γ should include all variables occurring in the equation. This981

is clearly also satisfied for γχ (as this has the same domain).982

– For all variables x in the constraint φ, γ(x) must be a value. But note that983

the variables in the constraint have a sort occurring in the original signature,984

so (since no new constructors of the original sorts are added, which implies985

no new values) γ(x) ∈ C, so γχ(x) = γ(x).986

– JφγK = ⊤; since γχ(x) = γ(x) for all x ∈ Var(φ), clearly also JφγχK = ⊤.987

Now suppose sγχ ↔∗
R∪Rorac

tγχ. We see by Lemma 22 that ζ(sγχ)↔∗
R′ ζ(tγχ),

and since ζ(sγχ) = sγ and ζ(tγχ) = tγ, this is exactly what we need. ⊓⊔

Thus, we finally have the prerequisites to prove Lemma 2.988

Lemma 2. An equation s ≈ t [φ] over a terminating, strong quasi-reductive989

LCSTRS is a global inductive theorem of L if for every Oracle extension Q and990

ground substitution γ over Q that respects this equation: sγ ↔∗
RQ tγ.991

30 K. Hagens, C. Kop

Proof. To prove that the equation is a global inductive theorem of L, let L′ be an992

arbitrary natural extension of L; we must see that for every ground substitution993

δ over L′ that respects the equation: sδ ↔∗
R′ tδ.994

Let Qorac be the oracle variant of L′. By Lemma 24, Qorac is an Oracle exten-
sion of L, and by Lemma 25, δχ respects the equation. Hence, by the assumptions
in the lemma (choosing δχ for γ and R∪Rorac for RQ), sδχ ↔∗

R∪Rorac
tδχ. Again

by Lemma 25, this implies the required property sδ ↔∗
R′ tδ. ⊓⊔

Proving oracle termination. In the text, we also claimed that static depen-995

dency pairs could be used to prove termination of all Oracle extensions of a given996

LCSTRS. To see this, note that static dependency pairs are based around the997

notion of computability. Following the definitions for LCSTRSs [12] (which are998

based on older techniques for unconstrained systems in the literature), we as-999

sume given a quasi-ordering ⊒ on the sorts, whose strict part ⊐ is well-founded,1000

and define the following relation between sorts and arbitrary types:1001

ι ⊒+ σ1 → . . .→ σm → κ if ι ⊒ κ ∧ ∀i ∈ {1, . . . ,m}.ι ⊐− σi
ι ⊐− σ1 → . . .→ σm → κ if ι ⊐ κ ∧ ∀i ∈ {1, . . . ,m}.ι ⊒+ σi

For all symbols f :: σ1 → . . . → σm → ι, we choose a set Acc(f) ⊆ {1, . . . ,m}1002

such that ι ⊒+ σi for all i ∈ Acc(f). We let g s1 · · · sn ⊵Acc t if t = g s1 · · · sn or1003

si⊵Acc t for some i ∈ Acc(g). With this definition, we can define a computability1004

predicate on terms such that:1005

– if s :: σ1 → . . . → σm → ι, then s is computable if and only if s t1 · · · tm is1006

computable for all computable terms ti :: σi1007

– if s :: ι, then s is computable if and only if:1008

• for all t such that s→R t also t is computable1009

• if s :: f s1 · · · sm, then for all i ∈ Acc(f) also si is computable.1010

– a computable term is guaranteed to be terminating1011

Assume given a natural extension L′ of L. Given a sort ordering and accessi-1012

bility function Acc, the static dependency pair framework can be used to prove1013

that if all function symbols in Σ′ \ Σ are computable, then so are all function1014

symbols in Σ, without further knowledge of Σ′ or R′. This then proves termi-1015

nation of the extension (for more details on the method and the assumptions on1016

the extension, we refer the reader to [12]). Thus, to use this method, we only1017

have to prove computability of all oracle symbols.1018

Now, we assume given an Oracle extension Q = (ΣQ,RQ) of L, and a sort1019

ordering and accessibility function on the sorts and function symbols of the1020

original signature L. We impose the additional restriction on the choice of ⊒1021

and Acc that for any constructor c :: σ1 → . . . → σm → ι of the original1022

signature, if i ∈ Acc(c) and σi is an arrow type τ1 → . . .→ τn → κ, then ι ⊐ κ.1023

This restriction still allows us to for instance use lists of functions. We then1024

assign Acc(f) = ∅ for all f ∈ ΣQ \ Σ, and extend the computability notion to1025

terms over Q. This gives us the following property:1026

Rewriting induction for higher-order constrained term rewriting systems 31

Lemma 26. Fix a sort ι. Suppose that for all f :: σ1 → . . . → σm → κ in1027

ΣQ \Σ with ι ⊐ κ, and all terminating ground terms s1 :: σ1, . . . , sm :: σm, the1028

term f s1 · · · sm is computable. Let s be a ground semi-constructor term of type1029

ι′ that is equal to ι in the sort ordering. Then s is computable.1030

Proof. By induction on the size of s. Since s is a ground semi-constructor term
of base type, we can write s = c s1 · · · sm with c :: σ1 → . . . → σm → ι′ a
constructor. Since a gsc term does not reduce, we only need to show that si is
computable for i ∈ Acc(c). If c is in ΣQ \ Σ, this is immediate because then
Acc(c) = ∅; so assume that c ∈ Σ. Let i ∈ Acc(c), so κ ⊒+ σi by definition
of Acc. If σi is a sort that is equal to ι in the sort ordering, then we conclude
computability of si by the induction hypothesis. Otherwise, write si = g u1 · · ·un
with g :: τ1 → . . . → τp → κ, with σi = τn+1 → . . . → τp → κ. Then due
to the additional restriction (or because n = p and we already covered the
“both sorts are equivalent” case) ι ⊐ κ. We observe that all uj are ground semi-
constructor terms, and therefore terminating. Moreover, all computable un+1 ::
τn+1, . . . , up :: τp are terminating by the computability notion. Hence, by the
induction hypothesis, g u1 · · ·up is computable for all computable un+1, . . . , up,
which implies computability of g u1 · · ·up = si as desired. ⊓⊔

This allows us to prove computability of all our extra function symbols:1031

Lemma 27. If f :: σ1 → . . .→ σm → ι ∈ ΣQ \Σ, and s1 :: σ1, . . . , sm :: σm are1032

computable terms, then f s1 · · · sm is computable.1033

Proof. We assume given terminating terms s1, . . . , sm under →RQ (by defini-1034

tion of computability, computable terms satisfy this property), and prove that1035

f s1 · · · sm is computable by induction first on ι (ordered with ⊐), second by1036

(s1, . . . , sm) (ordered placewise with →RQ).1037

Since Acc(f) = ∅ and s has base type, we only need to prove that t is com-
putable whenever s →RQ t. If a reduction step is taken in one of the si, then
we complete by the second induction hypothesis. Otherwise, t is a ground semi-
constructor term of type ι; we complete by Lemma 26 (since the induction hy-
pothesis gives the prerequisites to apply the lemma). ⊓⊔

C.2 Proof strategy1038

The rest of this section is devoted to the proof of the following statement:1039

Theorem 2. Let L be a terminating, strong quasi-reductive LCSTRS and let E1040

be a set of equations. If, by global rewriting induction, (E , ∅) ⊢∗ (∅,H), for some1041

set H, then every equation in E is a global inductive theorem of L.1042

By Lemma 2, it suffices to show that all elements of E are inductive theorems1043

in an arbitrary Oracle extension of L. So let us fix an arbitrary Oracle extension1044

Q = (ΣQ,RQ) of L. The proof is very similar to the proof of Theorem 1 in1045

Appendix A:1046

32 K. Hagens, C. Kop

– We define ↔E as in Appendix A, but with the difference that C is now1047

allowed to be a context over Q, and γ a substitution over Q. We do the1048

same for E and ↔root,semi
E .1049

– We adjust Lemma 6 to this new setting, to say: if ↔E ⊆ ↔∗
RQ on ground1050

terms over Q, then every equation in E is an inductive theorem of Q. (The1051

proof is immediate.)1052

Using the same reasoning as in Appendix A.2 (but with Q in place of L), it1053

is straightforward to check that Theorem 2 holds if the following lemma holds:1054

Lemma 28 (Main lemma). Suppose that (E ,H) ⊢ (E ′,H′), using global1055

rewriting induction. Then1056

(1) ↔root,semi
E\E′ ⊆ →∗

RQ∪H′ · E′ · ←∗
RQ∪H′1057

(2) →RQ∪H ⊆ →RQ · →∗
RQ∪H · E · ←∗

RQ∪H on ground terms over Q,1058

implies1059

→RQ∪H′ ⊆ →RQ · →∗
RQ∪H′ · E′ · ←∗

RQ∪H′ on ground terms over Q.1060

C.3 Soundness proof1061

Similar to the proof in Appendix A.3, we show that Lemma 28 holds for every1062

deduction rule, but this time we have to work with Q instead of L. Except for1063

Expansion (which now becomes Global Expansion), it is not difficult to see that1064

the proofs in Appendix A are easily adapted to this new situation: we just replace1065

the gsc substitutions over L by gsc substitutions over Q, and we are allowed to1066

reduce with RQ instead of only R. Aside from this:1067

– In Simplification, we also observe that every rule in R is also an element of1068

RQ, and that every calculation rule still exists in Q.1069

– In Generalize and Alter, we use an altered version of these derivation rules1070

that quantifies over all gsc substitutions over Q instead of those over L.1071

– For Deletion, note that if a constraint φ built over the original signature is1072

not satisfiable in L, then it is also not satisfiable in Q: any variable that1073

occurs in φ is in the original sort set S, so by definition of Q being a natural1074

extension, there are no values of this sort in Q that do not also occur in L.1075

– No additional observations are needed for Semi-constructor.1076

Therefore, we only need to show correctness of Global Expansion.1077

Global Expansion Similar to Expansion, we need to prove both (1) and (2)1078

of Lemma 28. To prove (1), we first introduce two helper lemmas.1079

Lemma 29. Let f s1 · · · sn be a ground term over Q such that1080

– f ∈ D (the defined symbols of the original LCSTRS) with n ≥ ar(f) = k1081

– for all 1 ≤ i ≤ n, q ∈ Pos(si): if si|q has base type, then si|q has a form1082

c t1 · · · tm with c a constructor symbol in Q1083

Rewriting induction for higher-order constrained term rewriting systems 33

Then there is a rule ℓ→ r [φ] ∈ R ⊆ RQ and a substitution γ over Q respecting1084

this rule such that f s1 · · · sk = lγ.1085

Proof. Let s := f s1 · · · sn, s′ := f µ1(s1) · · ·µn(sn) and δ := [Fp := s|p | all1086

variables Fp in Var(s′)]. Since f ∈ D, the argument sorts of f occur in the original1087

LCSTRS L, as do the argument sorts of any constructor. So, by definition of a1088

natural extension, µi(si) uses only constructors of L. Therefore s′δ = s, and s′1089

is a term over L. Note that every µi(si) is a CHV term.1090

Since s′ = f µ1(s1) · · ·µn(sn) has a defined symbol at the head, with n ≥
ar(f) and all µ(si) are CHV terms over the original signature, strong quasi-
reductivity indicates that s′ reduces in the original LCSTRS, and since the
µi(si) are constructor terms, it can only reduce at the head. So there is a rule
f ℓ1 · · · ℓk → r [φ] ∈ R and a substitution η over L respecting this rule such that
f µ1(s1) · · ·µk(sk) = f ℓ1 · · · ℓk. We are done choosing γ := ηδ. ⊓⊔

Lemma 30. If (E ⊎ {s ≈ t [φ]},H) ⊢ (E ∪ Expd(s ≈ t [φ], p),H ∪ {s→ t [φ]})1091

by (Global Expansion), and γ is a ground semi-constructor substitution over1092

Q that respects the equation s ≈ t [φ], then sγ →R · E∪Expd(s≈t [φ],p) tγ.1093

Proof. Let γ be a ground semi-constructor substitution over Q that respects1094

s ≈ t [φ]. We have s|p = f s1 · · · sn for f ∈ D (in the original signature), n ≥1095

ar(f) =: k and for all 1 ≤ i ≤ n, q ∈ Pos(si): if si|q has base type and is not a1096

variable, then si|q has a form c t1 · · · tm with c a constructor symbol.1097

But then any subterm (siγ)|q of base type is of the shape c (t1γ) · · · (tmγ) as
well, either because q ∈ Pos(si) and (siγ)|q = si|qγ, or because (siγ)|q = γ(x)|q′
for some x ∈ V(si) and q′ ∈ Pos(γ(x)) (and γ is a gsc substitution). Therefore,
by Lemma 29, f (s1γ) · · · (snγ) = ℓδ for some ℓ → r [ψ] ∈ R and substitution δ
over Q that respects ψ. Now, we finish the proof exactly as in Lemma 17. ⊓⊔

Part (1) of Lemma 28 is now proved by the following:1098

Corollary 2. If (E ⊎ {s ≈ t [φ]},H) ⊢ (E ∪ Expd(s ≈ t [φ], p),H ∪ {s→ t [φ]})1099

by (Global Expansion) then1100

↔root,semi
{s≈t [φ]}⊆ →

∗
R∪H∪{s→t [φ]} · E∪Expd(s≈t [φ],p) · ←∗

R∪H∪{s→t [φ]}

⊆ →∗
RQ∪H∪{s→t [φ]} · E∪Expd(s≈t [φ],p) · ←∗

RQ∪H∪{s→t [φ]}

And part (2) of Lemma 28 is proved by the following:1101

Lemma 31.1102

Suppose (E ⊎ {s ≈ t [φ]},H) ⊢ (E ∪ Expd(s ≈ t [φ], p),H ∪ {s→ t [φ]}) by (Global1103

Expansion), and →RQ∪H ⊆ →RQ · →∗
RQ∪H · E∪{s≈t [φ]} · ←∗

RQ∪H on1104

ground terms over Q. Then:1105

→RQ∪H∪{s→t [φ]} ⊆ →RQ · →∗
RQ∪H∪{s→t [φ]} ·

E∪Expd(s≈t [φ],p) · ←∗
RQ∪H∪{s→t [φ]}

holds on ground terms over Q.1106

34 K. Hagens, C. Kop

Proof. With a similar reasoning as in the proof of Lemma 19: because of Corol-1107

lary 2 it suffices to show that on ground terms over Q we have1108

→{s→t [φ]} ⊆→RQ · →∗
RQ∪H∪{s→t [φ]} · E∪Expd(s≈t [φ],p) · ←∗

RQ∪H∪{s→t [φ]}

So suppose C[sγ], C[tγ] are ground terms over Q such that C[sγ]→ C[tγ] with1109

s → t [φ] for some ground substitution γ over Q respecting this rule. Then1110

δ = γ ↓RQ is a ground semi-constructor substitution over Q, so by Lemma 301111

(and the Q-variant of Lemma 8) we have sδ →R · Exp(s≈t [φ],p) tδ. Therefore1112

C[sγ]→∗
RQ C[sδ]→R · Exp(s≈t [φ],p) C[tδ]←∗

RQ C[tγ]

So for sure1113

C[sγ]→∗
RQ C[sδ]→RQ · Exp(s≈t [φ],p) C[tδ]←∗

RQ C[tγ]

⊓⊔

	Rewriting induction for higher-order constrained term rewriting systems
	Introduction
	Preliminaries
	Logically Constrained Simply Typed Rewriting Systems
	Rewriting Induction

	Higher-order Inductive Theorems
	Inductive theorems and extensionality
	Higher-order quasi-reductivity

	Higher-order Rewriting Induction
	Simplifying equations
	Expanding equations (doing a case analysis)
	Altering (and generalizing) equations
	Finishing up
	Comparison to the first-order literature

	Global induction theorems
	Global rewriting induction
	Soundness result

	Discussion and future work
	Proofs for sec:higherOrderRI
	Alter scenarios
	Proof strategy
	Soundness proof

	Proofs for sec:globalindth
	Proofs for sec:globalRI
	Oracle extensions
	Proof strategy
	Soundness proof

