

1-Types vs Groupoids

Niels van der Weide Dan Frumin Herman Geuvers

Radboud University Nijmegen, The Netherlands

June 18, 2018

Motivation

A higher inductive type is given by constructors, equations, ...

Inductive $\mathbb{Z} :=$

- | $\mathbf{Z} : \mathbb{Z}$
- | $\mathbf{S} : \mathbb{Z} \rightarrow \mathbb{Z}$
- | $\mathbf{P} : \mathbb{Z} \rightarrow \mathbb{Z}$

Motivation

A higher inductive type is given by constructors, equations, ...

Inductive $\mathbb{Z} :=$

- | $\mathbf{Z} : \mathbb{Z}$
- | $\mathbf{S} : \mathbb{Z} \rightarrow \mathbb{Z}$
- | $\mathbf{P} : \mathbb{Z} \rightarrow \mathbb{Z}$
- | $\mathbf{PS} : \prod(x : \mathbb{Z}), \mathbf{S}(\mathbf{P} x) = x$
- | $\mathbf{SP} : \prod(x : \mathbb{Z}), \mathbf{P}(\mathbf{S} x) = x$

Motivation

A higher inductive type is given by constructors, equations, ...

Inductive $\mathbb{Z} :=$

```
|  $\mathbf{Z} : \mathbb{Z}$ 
|  $\mathbf{S} : \mathbb{Z} \rightarrow \mathbb{Z}$ 
|  $\mathbf{P} : \mathbb{Z} \rightarrow \mathbb{Z}$ 
|  $\mathbf{PS} : \prod(x : \mathbb{Z}), \mathbf{S}(\mathbf{P} x) = x$ 
|  $\mathbf{SP} : \prod(x : \mathbb{Z}), \mathbf{P}(\mathbf{S} x) = x$ 
|  $\mathbf{coh} : \prod(x : \mathbb{Z}), \mathbf{PS}(\mathbf{S} x) = \mathbf{ap}\ \mathbf{S}\ (\mathbf{SP} x)$ 
```

This type will be discussed in Pinyo's talk.

More examples:

- ▶ Type Theory in Type Theory (Kaposi, Altenkirch)
- ▶ Partiality (Altenkirch, Danielsson, Kraus)
- ▶ Finite Sets in HoTT (Frumin, Geuvers, Gondelman, Van der Weide)

Motivation

Dybjer and Moenclaey give a semantics of HITs in the groupoid model of type theory.

A groupoid G consists of

- ▶ A set G (*objects*)
- ▶ For each x, y in G a set $G x y$ (*hom sets*)
- ▶ For each x in G an element $e x : G x x$ (*identity*)
- ▶ For each x, y in G an *inverse* map

$$(\cdot)^{-1} : G x y \rightarrow G y x$$

- ▶ For all x, y, z in G a *composition*

$$\cdot : G y z \times G x y \rightarrow G x z$$

such that \cdot is associative, e is a neutral element for \cdot , and inv are inverses for \cdot .

Motivation

In addition, we have 1-types.

A *set* is a type for which equality is proof irrelevant. All inhabitants of $x = y$ are equal.

A *1-type* is a type for which every $x = y$ is a set.

Questions

1-types and groupoids are related.

- ▶ What's the precise relation between 1-types and groupoids?
- ▶ Can we use this to give a semantics of HITs in 1-types?

We look into the first item.

Path Groupoid

We can map 1-types to groupoids.

Given a 1-type A , define the *path groupoid* $P A$ on A :

- ▶ Objects are inhabitants of A
- ▶ The hom set is $x = y$ (this is a set, because A is a 1-type)
- ▶ Identity: equality is reflexive
- ▶ Inverse: equality is symmetric
- ▶ Composition: equality is transitive

The laws hold by path induction.

Groupoid Quotient

Given a groupoid G , we define the *groupoid quotient of G* as the following HIT:

```
Inductive gquot G :=  
| gcl : G → gquot G  
| gcleq : ∏(x, y : A), G x y → gcl x = gcl y  
| ge : ∏(x : A), gcleq x (e x) = refl  
| ginv : ∏(x, y : A), ∏g:G x y gcleq y x (g-1) = (gcleq x y g)-1  
| gconcat : ∏(x, y, z : A), ∏(g1 : G x y), ∏(g2 : G y z),  
  gcleq x z (g1 · g2) = gcleq x y g1 @ gcleq y z g2  
| gtrunc : ∏(x, y : gquot A G), ∏(p, q : x = y), ∏(r, s : p = q), r = s
```

Note the similarities to the Rezk completion (Ahrens, Kapulkin, Shulman).

Groupoid Quotient

Equality in the groupoid quotient of G is described by G .

Proposition

For every $x, y : A$ the types $\text{gcl } x = \text{gcl } y$ and $G x \equiv y$ are equivalent.

Proposition

For all 1-types A , we have $A \simeq \text{gquot } A (P A)$.

Bicategories

A bicategory is like a category, but it also has arrows between arrows.

Proposition

- ▶ *We have a bicategory of groupoids with functors and natural transformation.*
- ▶ *We have a bicategory of 1-types with functions and equality*

See the talk by Ahrens and Maggesi.

Main Conjecture

Conjecture

We have an biadjoint biequivalence $\mathbf{gquot} \dashv P$.

What does this amount to?

- ▶ We need to make adjoint equivalences $\mathbf{gquot}(P A) \rightarrow A$ and $G \rightarrow P(\mathbf{gquot} G)$
- ▶ and many, many, many coherencies

See the talk by Ahrens and Maggesi

What we did/will do

We formalized

- ▶ The propositions (`gcl` $x = \text{gcl } y$ and $G x \ y$ are equivalent,
 $A \simeq \text{gquot } A (P A)$)
- ▶ Some notions in bicategory theory (bicategories, lax functors,
transformations, ...)

Still remaining:

- ▶ Formalize the notions of biadjoints and biequivalences
- ▶ Prove the conjecture

See <https://github.com/nmvdw/groupoids>