
ReLoC technical report

Dan Frumin Robbert Krebbers Lars Birkedal

April 28, 2018

Abstract
The aim of this document is to formally describe the relational logic

ReLoC used for proving contextual refinement of higher-order stateful
concurrent programs. The logic is based on higher-order separation logic
Iris, and has been fully formalized in Coq. The repository, containing all
the formalized results and examples present in this text, can be found at
https://gitlab.mpi-sws.org/dfrumin/logrel-conc.

https://gitlab.mpi-sws.org/dfrumin/logrel-conc

Contents
1 Introduction 3

2 The object language 4
2.1 Syntax and operational semantics 4
2.2 The type system . 7
2.3 Contextual equivalence and contextual refinement 8

3 The calculus 13
3.1 Primitive rules . 15
3.2 Derived rules . 18
3.3 Compatibility lemmas and the fundamental property 21

4 Introductory example: fine-grained concurrent counter 23
4.1 General form of relational specifications: a library for locks . . . 23
4.2 Coarse-grained and fine-grained counters 24

5 Ticket lock from the counter specification 27

6 Interpretation in Iris 31
6.1 Ghost thread pool . 31
6.2 Encoding logical relations . 32
6.3 Deriving the symbolic execution rules 34
6.4 Soundness . 35

7 Further examples 38
7.1 Representation independence . 38
7.2 Irreversible state change . 39

8 Notes on logical atomicity 43
8.1 Logically atomic symbolic execution rules for compound commands 43
8.2 General form of a logically atomic relational specification 45
8.3 Atomic triples . 45

2

1 Introduction
Reasoning about equivalence of programs is an old problem in semantics of
programming languages, with applications many applications including program
verification and compilation. Possibly, the most widely used notion of program
equivalence is contextual equivalence, which states that programs are equivalent
if they exhibit the same observable (termination) behaviour under any contexts.
However, proving contextual equivalence of two given programs is tricky, as it
involves considering all the possible program contexts. One of the techniques
proposed to resolve this are logical relations (originally used to show safety of
the typing systems). In order to handle equivalence proofs in the presence of
advance PL features such as higher order store, recursive types, and concurrency,
the proof method of Kripke logical relations have been proposed, in which the
truth value of “relatedness” may vary in different worlds.

The aim of this work is to describe a system for formal reasoning about pro-
gram equivalence through logical relations for System F with state, existential
types, and concurrency primitives. The system is built on top of the power-
ful higher-order separation logic called Iris. This allows the user to leverage
advanced features of Iris, such as ghost state and invariants.

The current ReLoC library is developed by Dan Frumin and Robbert Kreb-
bers, and is based the earlier formalisation of Amin Timany, Robbert Krebbers,
and Lars Birkedal. The authors express their gratitude to Lars Birkedal, Amin
Timany and many other people involved in the Iris project.

3

2 The object language
The programming language for which we construct the relational model is Sys-
tem F with iso-recursive types, references, and concurrency primitives CAS and
fork. We abbreviate it as System Fµ,ref,conc,∃.

2.1 Syntax and operational semantics
The expressions, values, and evaluation contexts for the language are defined
below. We write closed(X, e) to denote that all free variables in the expression
e are elements of the set X. By closed(e) we denote closed(∅, e).

Syntax:

Values v1, v2 ∈ Val ::= () | l ∈ Loc | n ∈ N | b ∈ B | (v1, v2)
| inl v1 | inr v1 | fold v1 | Λ.e1 where closed(∅, e1)
| pack v1 | rec f x = e1 where closed({x, f}, e1)

Expressions e1, e2 ∈ Expr ::= v1 | x ∈ Var | e1 e2 | e1 ⊕ e2 | if e1 then e2 else e3

| π1 e1 | π2 e1 | case(e1, e2, e3) | fold e

| unfold e | Λ.e | e [] | pack e

| unpack e1 in e2 | fork {e} | ref(e)
| ! e | e1 ← e2 | CAS(e1, e2, e3) | . . .

Evaluation contexts K ∈ ECtx ::= [•] | K e | v K | K [] | (K, e) | (v,K) | K ⊕ e
| v ⊕K | π1K | π2K | inl K | inr K | case(K, e2, e3)
| ifK then e2 else e3 | foldK | unfoldK | packK

| unpack K in e | ref(K) | ! K | K ← e | Val← K

| CAS(K, e2, e3) | CAS(v,K, e3) | CAS(v1, v2,K)
Configurations σ ∈ State = Loc fin−⇀ Val

T ∈ ThreadPool = List Expr
ρ ∈ Cfg = ThreadPool× State

We make use the following derived forms.

Derived forms:

λx. e := rec () x = e

letx = t in e := (λx. e) t
e1; e2 := (λ(). e2) e1

Dynamics. The operational semantics are presented in three levels. Head
reductions are standard call-by-value reduction rules for λ-calculus with store
and concurrency. The head reductions are lifted to reductions under evaluation

4

contexts (primitive steps), and those in turn are lifted to reductions of configu-
rations (thread pool steps), which provide a concurrent interleaving semantics
for the language.

Head Reductions: (e, σ)→h (e′, σ′, T)
beta

closed({x, f}, e)
((rec f x = e) v, σ)→h (e[v/x][rec f x = e/f], σ, [])

proj
(πi (v1, v2), σ)→h (vi, σ, [])

case-inl
(case(inl v, e1, e2), σ)→h (e1 v, σ, [])

case-inr
(case(inr v, e1, e2), σ)→h (e2 v, σ, [])

binop
J⊕K(v1, v2) = v3

(v1 ⊕ v2, σ)→h (v3, σ, [])

if-true
(if true then e1 else e2, σ)→h (e1, σ, [])

if-false
(if false then e1 else e2, σ)→h (e2, σ, [])

unfold
(unfold (fold v), σ)→h (v, σ, [])

tbeta
closed(∅, e)

((Λ.e) [], σ)→h (e, σ, [])

unpack
(unpack (pack v) in e, σ)→h (e v, σ, [])

fork
(fork {e} , σ)→h ((), σ, [e])

alloc
σ(l) = ⊥

(ref(v), σ)→h (l, σ[l := v], [])

load
σ(l) = v

(! l, σ)→h (v, σ, [])

store
σ(l) = v′

(l← v, σ)→h ((), σ[l := v], [])

cas-fail
σ(l) 6= v1

(CAS(l, v1, v2), σ)→h (false, σ, [])

cas-suc
σ(l) = v1

(CAS(l, v1, v2), σ)→h (true, σ[l := v2], [])

Primitive Reductions: (e, σ)→ (e′, σ′, ~ef)
prim-step

(e, σ)→h (e′, σ′, ~ef)
(K[e], σ)→ (K[e′], σ′, ~ef)

5

Thread-pool Reductions: ρ→tp ρ
′

tp-step
T (i) = e (e, σ)→ (e′, σ′, ~ef)
(T, σ)→tp (T [i← e′] ++ ~ef , σ

′)

Remark 2.1. Note that we don’t have typing annotations in the syntax. In
particular, we write Λ.e instead of Λα.e, and similarly for type application.
Correspondingly, for the purposes of the implementation, in the typing discipline
we use de Bruijn indices for type variables. However, for the term variables we
still employ explicit substitution in our formalisation. The reason why we can get
away with this is that our semantics is call-by-value, as such we only substitute
values for variables, thus rendering the capture-avoidance problem irrelevant.

Definition 2.2. An expression e is said to be (strongly) atomic if it reduces to
a value in one step:

atomic(e) , ∀σ σ′ e′ ~ef , (e, σ)→ (e′, σ′, ~ef) =⇒ e′ ∈ Val.

Pure reductions. Our calculus is able to uniformly handle symbolic execu-
tions that do not change the physical state. Such reductions are called pure.

Definition 2.3. A reduction e→ e′ is pure if e is reducible in every state, and
all reductions from e do not change the state and end up in e′. Formally,

∀σ.reducible(e, σ) ∧ ∀σσ2∀e2.(e, σ)→ (e2, σ
′) =⇒ σ2 = σ ∧ e2 = e′

We write e→pure e
′ for reduction which is pure.

We have the following rules for →pure (in Coq the rules below are imple-
mented via type classes).

Pure executions: e→pure e
′

pure-binop
J⊕K(v1, v2) = v3

v1 ⊕ v2 →pure v3

pure-rec
closed({f, x}, e)

(rec f x = e) v →pure e[v/x][(rec f x = e)/f])

pure-proj-i
πi(v1, v2)→pure vi

pure-unfold
unfold (fold v)→pure v

pure-unpack
unpack (pack v) in e→pure e v

pure-if-true
if true then e1 else e2 →pure e1

pure-if-false
if false then e1 else e2 →pure e2

pure-case-inl
case(inl v, e1, e2)→pure e1 v

pure-case-inr
case(inr v, e1, e2)→pure e2 v

pure-tlam
(Λ.e) []→pure e

pure-exec-fill
e1 →pure e2

K[e1]→pure K[e2]

6

2.2 The type system
Remark 2.4. The syntax and the typing differ from the ones in the paper.
Here we use explicit names in the language of terms and De Bruijn indices in
the language of types. This is also the case in the Coq formalisation.

Types:

τ ∈ Type ::= 1 | 2 | N | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 | ref τ
| µτ | ∀τ | ∃τ | i ∈ TVar

The typing judgements are of the form Γ ` e : τ . Additionally, there is
a judgement EqType(τ) stating that the type τ supports (structural) equality
testing.

Types with structural equality: EqType(τ)

EqTUnit
EqType(1)

EqTNat
EqType(N)

EqTBool
EqType(2)

EqTProd
EqType(τ) EqType(τ ′)

EqType(τ × τ ′)

EqTSum
EqType(τ) EqType(τ ′)

EqType(τ + τ ′)

Typing judgements: Γ ` e : τ
var-typed
Γ(x) = τ

Γ ` x : τ
unit-typed
Γ ` () : 1

nat-typed
n ∈ N

Γ ` n : N

bool-typed
b ∈ B

Γ ` b : 2

binop-typed-nat
Γ ` e1 : N Γ ` e2 : N ⊕ operates on natural numbers

Γ ` e1 ⊕ e2 : typeof(⊕)

binop-typed-bool
Γ ` e1 : 2 Γ ` e2 : 2 ⊕ operates on booleans

Γ ` e1 ⊕ e2 : typeof(⊕)

refeq-typed
Γ ` e1 : ref τ Γ ` e2 : ref τ

Γ ` e1 == e2 : 2

pair-typed
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 × τ2

proj-typed
Γ ` e : τ1 × τ2
Γ ` πi e : τi

injl-typed
Γ ` e : τ1

Γ ` inl e : τ1 + τ2

injr-typed
Γ ` e : τ2

Γ ` inr e : τ1 + τ2

7

case-typed
Γ ` e0 : τ1 + τ2 Γ ` e1 : τ1 → τ3 Γ ` e2 : τ2 → τ3

Γ ` case(e0, e1, e2) : τ3

if-typed
Γ ` e0 : 2 Γ ` e1 : τ Γ ` e2 : τ

Γ ` if e0 then e1 else e2 : τ

rec-typed
x : τ1, f : τ1 → τ2,Γ ` e : τ2
Γ ` rec f x = e : τ1 → τ2

app-typed
Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

tlam-typed
(+1) 〈$〉 Γ ` e : τ

Γ ` Λ.e : ∀τ

tapp-typed
Γ ` e : ∀τ

Γ ` e [] : τ [σ/]

fold-typed
Γ ` e : τ [µτ/]

Γ ` fold e : µτ

unfold-typed
Γ ` e : µτ

Γ ` unfold e : τ [µτ/]

tpack-typed
Γ ` e : τ [σ/]

Γ ` pack e : ∃τ

tunpack-typed
Γ ` e1 : ∃τ1 (+1) 〈$〉 Γ ` e2 : τ1 → (+1) 〈$〉 τ2

Γ ` unpack e1 in e2 : τ2

fork-typed
Γ ` e : 1

Γ ` fork {e} : 1

alloc-typed
Γ ` e : τ

Γ ` ref(e) : ref τ

load-typed
Γ ` e : ref τ

Γ ` ! e : τ

store-typed
Γ ` e1 : ref τ Γ ` e2 : τ

Γ ` e1 ← e2 : 1

cas-typed
Γ ` e1 : ref τ Γ ` e2 : τ Γ ` e3 : τ EqType(τ)

Γ ` CAS(e1, e2, e3) : 2

2.3 Contextual equivalence and contextual refinement
Contextual equivalence is a formalisation of an important notion of program
equivalence. Intuitively, two programs e1 and e2 are contextually equivalent
if for any client p, p(e1) terminates to the same observable value as p(e2). A
directed variant of contextual equivalence is contextual refinement. To define it
formally, we employ the notion of a program context.

Program contexts:

C ∈ Ctx ::= [•] | rec f x = C | C e2 | e1 C | (C, e2) | (e1, C) | π1 C | π2 C | inl C | inr C
| case(C, e1, e2) | case(e0, C, e2) | case(e0, e1, C) | C ⊕ e2 | e1 ⊕ C
| if C then e1 else e2 | if e0 then C else e2 | if e0 then e1 else C | fold C | unfold C
| Λ.C | C [] | pack C | unpack C in e2 | unpack e1 in C
| fork {C} | ref(C) | ! C | C ← e2 | e1 ← C | CAS(C, e1, e2) | CAS(e0, C, e2) | CAS(e0, e1, C)

Notice that ECtx (Ctx, i.e. every evaluation context is a program context
as well. However, unlike evaluation contexts, a hole in program contexts can

8

appear under in any position – including under a lambda. In particular, that
means that the substitution of expression e for a hole – C[e] – can capture free
variables in e.

For the purposes of contextual refinement we only consider context with a
hole that “fits” a certain type. We write

[C] : (Γ ` τ)⇒ (Γ′ ` τ ′)

for a judgement stating that C is a typed context with the hole of type σ in
context ∆, returning an expression of type τ in context Γ.

Context typing: [C] : (Γ ` τ)⇒ (Γ′ ` τ ′)

[[•]] : (Γ ` τ)⇒ (Γ ` τ)
[C] : (Γ′ ` σ)⇒ (x : τ, f :(τ → τ ′),Γ ` τ ′)
[rec f x = C] : (Γ′ ` σ)⇒ (Γ ` τ → τ ′)

Γ ` e2 : τ [C] : (Γ′ ` σ)⇒ (Γ ` τ → τ ′)
[C e2] : (Γ′ ` σ)⇒ (Γ ` τ ′)

Γ ` e1 : τ → τ ′ [C] : (Γ′ ` σ)⇒ (Γ ` τ)
[e1 C] : (Γ′ ` σ)⇒ (Γ ` τ ′)

Γ ` e2 : τ ′ [C] : (Γ′ ` σ)⇒ (Γ ` τ)
[(C, e2)] : (Γ′ ` σ)⇒ (Γ ` τ × τ ′)

Γ ` e1 : τ [C] : (Γ′ ` σ)⇒ (Γ ` τ ′)
[(e1, C)] : (Γ′ ` σ)⇒ (Γ ` τ × τ ′)

[C] : (Γ′ ` σ)⇒ (Γ ` τ × τ ′)
[π1 C] : (Γ′ ` σ)⇒ (Γ ` τ)

[C] : (Γ′ ` σ)⇒ (Γ ` τ × τ ′)
[π2 C] : (Γ′ ` σ)⇒ (Γ ` τ ′)

[C] : (Γ′ ` σ)⇒ (Γ ` τ)
[inl C] : (Γ′ ` σ)⇒ (Γ ` τ + τ ′)

[C] : (Γ′ ` σ)⇒ (Γ ` τ ′)
[inr C] : (Γ′ ` σ)⇒ (Γ ` τ + τ ′)

Γ ` e1 : τ1 → τ ′ Γ ` e2 : τ2 → τ ′ [C] : (Γ′ ` σ)⇒ (Γ ` τ1 + τ2)
[case(C, e1, e2)] : (Γ′ ` σ)⇒ (Γ ` τ ′)

Γ ` e0 : τ1 + τ2 Γ ` e2 : τ2 → τ ′ [C] : (Γ′ ` σ)⇒ (Γ ` τ1 → τ ′)
[case(e0, C, e2)] : (Γ′ ` σ)⇒ (Γ ` τ ′)

Γ ` e0 : τ1 + τ2 Γ ` e1 : τ1 → τ ′ [C] : (Γ′ ` σ)⇒ (Γ ` τ2 → τ ′)
[case(e0, e1, C)] : (Γ′ ` σ)⇒ (Γ ` τ ′)

9

[C] : (Γ′ ` σ)⇒ (Γ ` 2) Γ ` e1 : τ Γ ` e2 : τ
[if C then e1 else e2] : (Γ′ ` σ)⇒ (Γ ` τ)

Γ ` e0 : 2 [C] : (Γ′ ` σ)⇒ (Γ ` τ) Γ ` e2 : τ
[if e0 then C else e2] : (Γ′ ` σ)⇒ (Γ ` τ)

Γ ` e0 : 2 Γ ` e1 : τ [C] : (Γ′ ` σ)⇒ (Γ ` τ)
[if e0 then e1 else C] : (Γ′ ` σ)⇒ (Γ ` τ)

[C] : (Γ′ ` σ)⇒ (Γ ` N) Γ ` e2 : N
[C ⊕ e2] : (Γ′ ` σ)⇒ (Γ ` N)

Γ ` e1 : N [C] : (Γ′ ` σ)⇒ (Γ ` N)
[e1 ⊕ C] : (Γ′ ` σ)⇒ (Γ ` N)

[C] : (Γ′ ` σ)⇒ (Γ ` τ [µτ/])
[fold C] : (Γ′ ` σ)⇒ (Γ ` µτ)

[C] : (Γ′ ` σ)⇒ (Γ ` µτ)
[unfold C] : (Γ′ ` σ)⇒ (Γ ` τ [µτ/])

[C] : (Γ′ ` σ)⇒ (+1 〈$〉 Γ ` τ)
[Λ.C] : (Γ′ ` σ)⇒ (Γ ` ∀τ)

[C] : (Γ′ ` σ)⇒ (Γ ` ∀τ)
[C []] : (Γ′ ` σ)⇒ (Γ ` τ [τ ′/])

[C] : (Γ′ ` σ)⇒ (Γ ` τ [τ ′/])
[pack C] : (Γ′ ` σ)⇒ (Γ ` ∃τ)

+1 〈$〉 Γ ` e2 : τ → +1 〈$〉 τ2 [C] : (Γ′ ` σ)⇒ (Γ ` ∃τ)
[unpack C in e2] : (Γ′ ` σ)⇒ (Γ ` τ2)

Γ ` e1 : ∃τ [C] : (Γ′ ` σ)⇒ (+1 〈$〉 Γ ` τ → +1 〈$〉 τ2)
[unpack e1 in C] : (Γ′ ` σ)⇒ (Γ ` τ2)

[C] : (Γ′ ` σ)⇒ (Γ ` 1)
[fork {C}] : (Γ′ ` σ)⇒ (Γ ` 1)

[C] : (Γ′ ` σ)⇒ (Γ ` τ)
[ref(C)] : (Γ′ ` σ)⇒ (Γ ` ref τ)

[C] : (Γ′ ` σ)⇒ (Γ ` ref τ)
[! C] : (Γ′ ` σ)⇒ (Γ ` τ)

[C] : (Γ′ ` σ)⇒ (Γ ` ref τ) Γ ` e2 : τ
[C ← e2] : (Γ′ ` σ)⇒ (Γ ` 1)

Γ ` e1 : ref τ [C] : (Γ′ ` σ)⇒ (Γ ` τ)
[e1 ← C] : (Γ′ ` σ)⇒ (Γ ` 1)

[C] : (Γ′ ` σ)⇒ (Γ ` ref τ) Γ ` e1 : τ Γ ` e2 : τ EqType(τ)
[CAS(C, e1, e2)] : (Γ′ ` σ)⇒ (Γ ` 2)

10

Γ ` e0 : ref τ [C] : (Γ′ ` σ)⇒ (Γ ` τ) Γ ` e2 : τ EqType(τ)
[CAS(e0, C, e2)] : (Γ′ ` σ)⇒ (Γ ` 2)

Γ ` e0 : ref τ Γ ` e1 : τ [C] : (Γ′ ` σ)⇒ (Γ ` τ) EqType(τ)
[CAS(e0, e1, C)] : (Γ′ ` σ)⇒ (Γ ` 2)

The validity of the typing rules for contexts is supported by the following
lemma.

Lemma 2.5. If Γ ` e : τ and [C] : (Γ ` τ)⇒ (Γ′ ` τ ′), then Γ′ ` C[e] : τ ′.

Proof. By induction on the derivation of the context typing.

Informally, contextual refinement should say that if we embed the first ex-
pression into any (well-typed) program context, and the resulting program ter-
minates to an observable value v, then plugging the second expression into the
same context will also result in the value v.

Definition 2.6. A type τ is observable, denoted as ObsType(τ), if it is either
a base type (naturals, booleans), or obtained from the observable types by means
of product or sum types.

Definition 2.7. We say that e1 contextually refines e2 at type τ in context Γ
– denoted as Γ ` e1 -ctx e2 : τ – if e1 and e2 terminate to the same observable
value under any suitable program context. Formally,

Γ ` e1 -ctx e2 : τ , ∀τ ′, ObsType(τ ′) =⇒
∀[C] : (Γ ` τ)⇒ (∅ ` τ ′), ∀v T σ, ([C[e1]], ∅)→∗tp ([v] ++ T, σ) =⇒

∃T ′ σ′, ([C[e2]], ∅)→∗tp ([v] ++ T ′, σ′)

Note that we only quantify over the typed contexts with the observable return
type. If we allow C to be quantified over arbitrary program contexts, then the
notion of contextual refinement will be too fine for our purpose. Consider, for
instance, a context C := λx. [•]. This context has a type [C] : ([x : 2] ` τ) ⇒
(∅ ` 2→ τ). If we were to allow contexts of such type in Definition 2.7, then the
notion of contextual refinement will collapse to syntactic equality: C[e] always
terminates to a closure λx. e, and C[e′] terminates to the same value iff e = e′.

The notion of contextual refinement is hard to work with directly due to
the fact that what we need to show an instance of contextual refinement, we
need to prove something for an arbitrary program context. As we will see in
later sections, a stronger notion of logical refinement is much more suitable for
deductive reasoning.

11

Notes on formalisation
The syntax and the dynamics of Fµ,ref,conc,∃ are defined in F_mu_ref_conc/lang.v.
The →pure instances are defined in F_mu_ref_conc/pureexec.v. Definitions of
typed contexts and contextual refinement are formalised in F_mu_ref_conc/context_refinement.v.

In the F_mu_ref_conc directory of the Coq formalisation one can also find
modules containing lemmas about binders, substitution, as well as some Coq-
specific things (notation for the object language, reified syntax for automatically
solving questions of closedness and atomicity) and Iris-specific things (WP-
calculus for Fµ,ref,conc,∃ with the adequacy proofs).

The binders in the term language are represented using explicit names. For
our purposes it is actually fine and we avoid any free variable capturing is-
sues because the a beta reduction can be performed only if the argument is
a value (and consequently is closed). This approach actually gave us some
speedup, compared to using De Bruijn indices and σ-calculus as implemented
by autosubst [5]. On the level of types, however, we still employ De Bruijn
indices and autosubst.

The →pure judgement is implemented as a type class PureExec P e e’ in
Iris, where P is a (pure) proposition describing conditions under which e can be
reduced to e’ – for example P in pure-binop ensures that the binary operation
is defined on the arguments.

12

3 The calculus
The basic calculus of logical relations is based on the higher-order separation
logic Iris, and is enriched with propositions of the form

∆ | Γ |=E e - e′ : τ (1)

where e and e′ are expressions, τ is a type, Γ is a typing environment (that is, it
assigns types to variable names), ∆ is an interpretation for type variables (that
is, it assigns relations to type variables), and E is an invariant mask.

Intuitively, the proposition in Equation (1) states that for e and e′ are related
at type τ , in which free type variables are interpreted using ∆. The role of the
mask E is two-fold. On one hand, it keeps track of the invariants that can still
be opened, preventing the issues of reentrancy. On the other hand, if the mask
is not >, then it signifies that a symbolic execution step on the left hand side
has been taken; it then prevents further reductions on the left hand side until
all the invariants has been restored

We use the following shorthand:

• ∆ | Γ |= e - e′ : τ , ∆ | Γ |=> e - e′ : τ

The rules themselves are presented in Sections 3.1 and 3.2. Below we provide
some comments.

Value interpretation. The value interpretation JτK∆(v1, v2) is defined in-
ductively on the structure of the type. Usually, the user of the logic would not
see these kind of propositions in their proofs, apart from some places where they
are crucial, for instance during the representation independence proofs.

Structural rules. fupd-logrel is the rule for opening invariants around the
masked refinement judgement. The rule lr-closure is crucial for reasoning
about higher-order programs.

Symbolic execution. To perform actual refinement proofs in the system we
need to be able to symbolically execute expressions under a given type. For re-
ductions that do not change the state the rules are lr-pure-l, lr-pure-l-masked,
and lr-pure-r. The rules witness the fact that the refinement judgements are
closed under reductions. There are general rules for pure and stateful reductions
on both sides.

The rules for symbolically executing stateful reductions are more involved.
Consider, for instance, the following rule for performing a store operation on
the left hand side.

lr-store-l’
. l 7→i v

′ (l 7→i v −∗ ∆ | Γ |= K[()] - e′ : τ)
∆ | Γ |= K[l← v] - e′ : τ

13

This rule is suitable for symbolic executing in sequential programs. However,
consider what happens when l 7→i v belongs to some invariant I that links
together l in the target program with l′ in the source program; for instance
∃n.l 7→i n ∗ l′ 7→s n

N . If we want to prove the refinement

∆ | Γ |= l← m - l′ ← m : 1, (2)

then we first apply fupd-logrel to get a necessary view shift to be able to
open the invariant. After we open the invariant and apply lr-store-l’ we are
left with:

|V>\N > (l 7→i m −∗ ∆ | Γ |= () - l′ ← m : 1)

Which means that we have to immediately close the invariant without being
able to perform a symbolic execution step on the right hand side – this will not
work because the invariant is broken at this stage. To circumvent this limitation
we propose a slightly different rule lr-store-l and a corresponding right-hand
side rule lr-store-r.

lr-store-l
|V> E ∃v′. . l 7→i v

′ ∗ .(l 7→i v −∗ ∆ | Γ |=E K[()] - e′ : τ)
∆ | Γ |= K[l← v] - e′ : τ

lr-store-r
l 7→s v

′ (l 7→s v −∗ ∆ | Γ |=E e - K[()] : τ) ↑logrelN ⊆ E
∆ | Γ |=E e - K[l← v] : τ

Using those two rules we can prove the refinement ∆ | Γ |= l ← m - l′ ←
m : 1 as follows: first we apply lr-store-l, and open up the invariant. This gets
rid of the view shift, which allows us to frame l 7→i n, leaving us with l′ 7→s n.
It remains to prove ∆ | Γ |=>\N () - l′ ← m : 1 from l 7→i m. For this we apply
lr-store-r resulting in a proof obligation

l 7→i m ∗ l′ 7→s m ` ∆ | Γ |=>\N () - () : 1

It can be proven by applying fupd-logrel, closing the invariant, and applying
the compatibility lemma for the unit type. The full proof derivation can be
found in Section 3.

The general rules for stateful reductions are lr-wp-atomic-l for atomic re-
ductions and lr-wp-l for general reductions.

The symbolic execution rules for the reductions on the right hand side are
simpler than those for the left hand side, and they can be performed under
arbitrary masks. The use of the proposition i Z⇒ e in lr-fork-r will become
clear after the introduction of the thread pool resource algebra in Section 6.1;
a general rule for stateful reductions on the right hand side, from which the
specific rules can be derived, is described in Section 6.3.

14

True ` ∆ | Γ |= () - () : 1

|V>\N >True ` |V>\N >∆ | Γ |= () - () : 1

|V>\N >True ` ∆ | Γ |=>\N () - () : 1
.(∃m, l 7→i m ∗ l′ 7→s m), . I ≡−∗>\N > True ` ∆ | Γ |=>\N () - () : 1

l 7→i m, l
′ 7→s m, . I ≡−∗>\N > True ` ∆ | Γ |=>\N () - () : 1

l 7→i m, l
′ 7→s n, . I ≡−∗>\N > True ` ∆ | Γ |=>\N () - l′ ← m : 1

. l′ 7→s n, . I ≡−∗>\N > True ` .(l 7→i m −∗ ∆ | Γ |=>\N () - l′ ← m : 1)
. l 7→i n, . l

′ 7→s n, . I ≡−∗>\N > True ` |V>\N ∃v′, .(l 7→i v
′) ∗ .(l 7→i m −∗ ∆ | Γ |=>\N () - l′ ← m : 1)

I
N ` |V> >\N ∃v′, .(l 7→i v

′) ∗ .(l 7→i m −∗ ∆ | Γ |=>\N () - l′ ← m : 1)

I
N ` ∆ | Γ |= l← m - l′ ← m : 1

Figure 1: Full derivation of Equation (2)

3.1 Primitive rules

Value interpretation: JτK∆(v1, v2)

v1 = () ∧ v2 = ()
J1K∆(v1, v2)

∃n ∈ N, v1 = v2 = n

JNK∆(v1, v2)

v1 = true ∧ v2 = true ∨ v1 = false ∧ v2 = false

J2K∆(v1, v2)

∃w1 w2 w
′
1 w
′
2, v1 = (w1, w2) ∗ v2 = (w′1, w′2) ∗ (w1, w

′
1) ∈ JτK∆ ∗ (w2, w

′
2) ∈ JσK∆

Jτ × σK∆(v1, v2)

∃v v′, (v1 = inl v ∗ v2 = inl v′ ∗ (v, v′) ∈ JτK∆) ∨ (v1 = inr v ∗ v2 = inr v′ ∗ (v, v′) ∈ JσK∆)
Jτ + σK∆(v1, v2)

(∀(w1, w2) ∈ JτK∆, ∆ | ∅ |= v1 w1 - v2 w2 : σ) the mask E is arbitrary
Jτ → σK∆(v1, v2)

∀R : Val×Val→ iProp, JτK(R::∆)(v1 [], v2 [])
J∀(τ)K∆(v1, v2)

15

∃v v′, ∃R : Val×Val→ iProp, v1 = pack v ∗ v2 = pack v′ ∗ JτK(R::∆)(v, v′)
J∃(τ)K∆(v1, v2)

∃v v′, v1 = fold v ∗ v2 = fold v′ ∗ .JτK(µ(τ)::∆)(v, v′)
Jµ(τ)K∆(v1, v2)

Irev(l, l′, JτK∆)
logN.(l,l′)

Jref τK∆(l, l′)
�∆(i)(v1, v2)
JxiK∆(v1, v2)

interp-persistent
JτK∆(v1, v2)
�JτK∆(v1, v2)

where

Irev : Loc× Loc→ (Val×Val→ iProp) ne−→ iProp
Irev(l, l′, τ i) , ∃v v′, l 7→i v ∗ l′ 7→s v

′ ∗ τi(v, v′)

Remark 3.1. The value interpretation rule for the arrow type requires an in-
variant spec_ctx(ρ) in the context. We can, however, always obtain such an
invariant from a logical refinement judgement. See “logrel/rules.v” in the for-
malisation for details (interp_val_arrow and bin_log_related_spec_ctx).

Refinement judgements: ∆ | Γ |=E e1 - e2 : τ
lr-closure
�(∀v v′, JτK∆(v, v′) −∗ ∆ | Γ |= (rec f x = e) v - (rec f ′ x′ = e′) v′ : τ ′) closed(rec f x = e) closed(rec f ′ x′ = e′)

∆ | Γ |= rec f x = e - rec f ′ x′ = e′ : τ → τ ′

fupd-logrel
|VE1 E2 (∆ | Γ |=E2 e - e

′ : τ)
∆ | Γ |=E1 e - e

′ : τ

lr-weaken-2
∆ | Γ |= e - e′ : τ

(R,∆) | (+1) 〈$〉 Γ |= e - e′ : (+1) 〈$〉 τ

lr-return
JτK∆(v1, v2)

∆ | Γ |= v1 - v2 : τ

lr-bind-up
(R,∆) | (+1) 〈$〉 Γ |= e1 - e2 : τ (∀v v′, JτK(R,∆)(v, v′) −∗ ∆ | Γ |= K[v] - K ′[v′] : τ ′)

∆ | Γ |= K[e1] - K ′[e2] : τ ′

lr-pure-l
e→pure e

′ .∆ | Γ |= K[e′] - t : τ
∆ | Γ |= K[e] - t : τ

lr-pure-l-masked
e→pure e

′ ∆ | Γ |=E K[e′] - t : τ
∆ | Γ |=E K[e] - t : τ

lr-wp-atomic-l
|V> EwpE e {v.∆ | Γ |=E K[v] - t : τ} atomic(e) closed(e)

∆ | Γ |= K[e] - t : τ

lr-wp-l
wp e {v.∆ | Γ |= K[v] - t : τ} closed(e)

∆ | Γ |= K[e] - t : τ

lr-pure-r
e→pure e

′ ∆ | Γ |=E t - K[e′] : τ ↑logrelN ⊆ E
∆ | Γ |=E t - K[e] : τ

For the reductions on the RHS it is assumed that ↑logrelN ⊆ E .

16

lr-alloc-r
∀l, l 7→s v −∗ ∆ | Γ |=E t - K[l] : τ

∆ | Γ |=E t - K[ref(v)] : τ

lr-load-r
l 7→s v l 7→s v −∗ ∆ | Γ |=E t - K[v] : τ

∆ | Γ |=E t - K[! l] : τ

lr-store-r
l 7→s − l 7→s v −∗ ∆ | Γ |=E t - K[()] : τ

∆ | Γ |=E t - K[l← v] : τ

lr-cas-fail-r
l 7→s v

′ v′ 6= v1 l 7→s v1 −∗ ∆ | Γ |=E t - K[false] : τ
∆ | Γ |=E t - K[CAS(l, v1, v2)] : τ

lr-cas-suc-r
l 7→s v1 l 7→s v2 −∗ ∆ | Γ |=E t - K[true] : τ

∆ | Γ |=E t - K[CAS(l, v1, v2)] : τ

lr-fork-r
∀i, (i Z⇒ e −∗ ∆ | Γ |=E t - K[()] : τ) closed(e)

∆ | Γ |=E t - K[fork {e}] : τ

lr-var
Γ(x) = τ

∆ | Γ |= x - x : τ

lr-rec
�(∆ | f :(τ → σ), x : τ,Γ |= e - e′ : σ) closed({x, f} ∪ (dom Γ), e) closed({x, f} ∪ (dom Γ), e′)

∆ | Γ |= rec f x = e - rec f x = e′ : τ → σ

lr-tlam
∀τi : Val×Val→ iProp, �((τi,∆) | (+1) 〈$〉 Γ |= e - e′ : τ)

∆ | Γ |= Λ.e - Λ.e′ : ∀τ

lr-tapp
∆ | Γ |= e - e′ : ∀τ τi : Val×Val→ iProp

(τi,∆) | (+1) 〈$〉 Γ |= e [] - e′ [] : τ

lr-pack
(τi,∆) | (+1) 〈$〉 Γ |= e - e′ : τ
∆ | Γ |= pack e - pack e′ : ∃τ

lr-unpack
∆ | Γ |= e1 - e

′
1 : ∃τ1 (∀τi : Val×Val→ iProp, (τi,∆) | (+1) 〈$〉 Γ |= e2 - e

′
2 : τ1 → (+1) 〈$〉 τ2)

∆ | Γ |= unpack e1 in e2 - unpack e′1 in e′2 : τ2

lr-fork
∆ | Γ |= e - e′ : 1

∆ | Γ |= fork {e} - fork {e′} : 1

17

3.2 Derived rules
For the symbolic execution rules for the RHS it is assumed that ↑logrelN ⊆ E .

The following rules are derived using the →pure rules, lr-pure-l, and lr-
pure-r. The rule lr-arrow is derived from lr-closure and lr-return.

The rule lr-bind is derived from lr-bind-up and lr-weaken-2. The difference
between the two is that lr-bind-up contains a baked in semantic type R. The
idea here is that we don’t actually require the expressions that we bind to have
the same syntactic type, like in lr-bind.

lr-arrow
�(∀v v′, �(∆ | Γ |= v - v′ : τ) −∗ ∆ | Γ |= (rec f x = e) v - (rec f ′ x′ = e′) v′ : τ ′) closed({f, x}, e) closed({f ′, x′}, e′)

∆ | Γ |= rec f x = e - rec f ′ x′ = e′ : τ → τ ′

lr-bind
∆ | Γ |= e1 - e2 : τ (∀v v′, JτK∆(v, v′) −∗ ∆ | Γ |= K[v] - K ′[v′] : τ ′)

∆ | Γ |= K[e1] - K ′[e2] : τ ′

lr-rec-l
.(∆ | Γ |= K[e[v/x][rec f x = e/f]] - t : τ) closed(rec f x = e)

∆ | Γ |= K[(rec f x = e) v] - t : τ

lr-fst-l
.(∆ | Γ |= K[v1] - t : τ)

∆ | Γ |= K[π1(v1, v2)] - t : τ

lr-snd-l
.(∆ | Γ |= K[v2] - t : τ)

∆ | Γ |= K[π2(v1, v2)] - t : τ

lr-tlam-l
.(∆ | Γ |= K[e] - t : τ) closed(e)

∆ | Γ |= K[(Λ.e) []] - t : τ

lr-fold-l
.(∆ | Γ |= K[v] - t : τ)

∆ | Γ |= K[unfold (fold v)] - t : τ

lr-pack-l
.(∆ | Γ |= K[e v] - t : τ)

∆ | Γ |= K[unpack (pack v) in e] - t : τ

lr-case-inl-l
.(∆ | Γ |= K[e1 v] - t : τ)

∆ | Γ |= K[case(inl v, e1, e2)] - t : τ

lr-case-inr-l
.(∆ | Γ |= K[e2 v] - t : τ)

∆ | Γ |= K[case(inl v, e1, e2)] - t : τ

lr-if-true-l
.(∆ | Γ |= K[e1] - t : τ)

∆ | Γ |= K[if true then e1 else e2] - t : τ

lr-if-false-l
.(∆ | Γ |= K[e2] - t : τ)

∆ | Γ |= K[if false then e1 else e2] - t : τ

18

lr-binop-l
.(∆ | Γ |= K[k] - t : τ) k = nJ⊕Km

∆ | Γ |= K[n⊕m] - t : τ

lr-rec-r
∆ | Γ |=E t - K[e[v/x][rec f x = e/f]] : τ closed(rec f x = e)

∆ | Γ |=E t - K[(rec f x = e) v] : τ

lr-fst-r
∆ | Γ |=E e - K[v1] : τ

∆ | Γ |=E e - K[π1(v1, v2)] : τ

lr-snd-r
∆ | Γ |=E e - K[v2] : τ

∆ | Γ |=E e - K[π2(v1, v2)] : τ

lr-tlam-r
∆ | Γ |=E t - K[e] : τ closed(e)

∆ | Γ |=E t - K[(Λ.e) []] : τ

lr-fold-r
∆ | Γ |=E t - K[v] : τ

∆ | Γ |=E t - K[unfold (fold v)] : τ

lr-pack-r
∆ | Γ |=E t - K[e v] : τ closed(e)

∆ | Γ |=E t - K[unpack (pack v) in e] : τ

lr-case-inl-r
∆ | Γ |=E t - K[e1 v] : τ

∆ | Γ |=E t - K[case(inl v, e1, e2)] : τ

lr-case-inr-r
∆ | Γ |=E t - K[e2 v] : τ

∆ | Γ |=E t - K[case(inl v, e1, e2)] : τ

lr-if-true-r
∆ | Γ |=E t - K[e1] : τ

∆ | Γ |=E t - K[if true then e1 else e2] : τ

lr-if-false-r
∆ | Γ |=E t - K[e2] : τ

∆ | Γ |=E t - K[if false then e1 else e2] : τ

lr-binop-r
∆ | Γ |=E t - K[k] : τ k = J⊕K(n,m)

∆ | Γ |=E t - K[n⊕m] : τ

Utilising lr-wp-atomic-l we can prove the admissibility of the stateful re-
duction rules.

lr-fork-l
∆ | Γ |= K[()] - t : τ wp e {True} closed(e)

∆ | Γ |= K[fork {e}] - t : τ

19

lr-alloc-l
|V> E

.(∀l, l 7→i v −∗ ∆ | Γ |=E K[l] - t : τ)
∆ | Γ |= K[ref(v)] - t : τ

lr-load-l
|V> E (∃v, . l 7→i v ∗ .(l 7→i v −∗ ∆ | Γ |=E K[v] - t : τ))

∆ | Γ |= K[! l] - t : τ

lr-store-l
|V> E (. l 7→i − ∗ .(l 7→i v −∗ ∆ | Γ |=E K[()] - t : τ))

∆ | Γ |= K[l← v] - t : τ

lr-cas-l
|V> E (∃v′, . l 7→i v

′ ∗ (v′ 6= v1 −∗ .(l 7→i v
′ −∗ ∆ | Γ |=E K[false] - t : τ))

∧(v′ = v1 −∗ .(l 7→i v2 −∗ ∆ | Γ |=E K[true] - t : τ)))
∆ | Γ |= K[CAS(l, v1, v2)] - t : τ

Note that we have only one rule for CAS, which is not the case in the WP-
calculus. The reason for that is the following: if l 7→i v

′ is stored in an invariant,
we do not know, a priori, whether v′ is going to be equal to v1. The only way
do decide whether the CAS succeeds is to open the invariant first. Hence, the
decision must be put under the fancy update modality.

The derived compatibility rules are proven using the “monadic” rules (lr-
return, lr-bind) and symbolic execution rules.

lr-val
|VE JτK∆(v, v′)

∆ | Γ |= v - v′ : τ

lr-literal
c is a literal of type τ

∆ | Γ |= c - c : τ

lr-pair
∆ | Γ |= e1 - e2 : τ ∆ | Γ |= e′1 - e

′
2 : σ

∆ | Γ |= (e1, e
′
1) - (e2, e

′
2) : τ × σ

lr-fst
∆ | Γ |= e1 - e2 : τ × σ

∆ | Γ |= π1(e1) - π1(e2) : τ

lr-snd
∆ | Γ |= e1 - e2 : τ × σ

∆ | Γ |= π2(e1) - π2(e2) : σ

lr-app
∆ | Γ |= e1 - e2 : τ → σ ∆ | Γ |= e′1 - e

′
2 : τ

∆ | Γ |= e1 e
′
1 - e2 e

′
2 : σ

lr-injl
∆ | Γ |= e1 - e2 : τ

∆ | Γ |= inl(e1) - inl(e2) : τ + σ

lr-injr
∆ | Γ |= e1 - e2 : σ

∆ | Γ |= inr(e1) - inr(e2) : τ + σ

lr-case
∆ | Γ |= e0 - e

′
0 : τ1 + τ2 ∆ | Γ |= e1 - e

′
1 : τ1 → τ3 ∆ | Γ |= e2 - e

′
2 : τ2 → τ3

∆ | Γ |= case(e0, e1, e2) - case(e′0, e′1, e′2) : τ3

20

lr-if
∆ | Γ |= e0 - e

′
0 : 2 ∆ | Γ |= e1 - e

′
1 : τ ∆ | Γ |= e2 - e

′
2 : τ

∆ | Γ |= if e0 then e1 else e2 - if e′0 then e′1 else e′2 : τ

lr-binop
∆ | Γ |= e1 - e

′
1 : N ∆ | Γ |= e2 - e

′
2 : N

∆ | Γ |= e1 ⊕ e2 - e
′
1 ⊕ e′2 : N

lr-tapp’
∆ | Γ |= e - e′ : ∀τ

∆ | Γ |= e [] - e′ [] : τ [σ/]

lr-fold
∆ | Γ |= e - e′ : τ [µ(τ)/]

∆ | Γ |= fold(e) - fold(e′) : µ(τ)

lr-unfold
∆ | Γ |= e - e′ : µ(τ)

∆ | Γ |= unfold(e) - unfold(e′) : τ [µ(τ)/]

lr-pack’
∆ | Γ |= e - e′ : τ [σ/]

∆ | Γ |= pack e - pack e′ : ∃τ

lr-alloc
∆ | Γ |= e - e′ : τ

∆ | Γ |= ref(e) - ref(e′) : ref(τ)

lr-load
∆ | Γ |= e - e′ : ref(τ)

∆ | Γ |= ! e - ! e′ : τ

lr-store
∆ | Γ |= e - e′ : ref(τ) ∆ | Γ |= t - t′ : τ

∆ | Γ |= e← t - e′ ← t′ : 1

lr-cas
∆ | Γ |= e1 - e

′
1 : ref(τ) EqType(τ) ∆ | Γ |= e2 - e

′
2 : τ ∆ | Γ |= e3 - e

′
3 : τ

∆ | Γ |= CAS(e1, e2, e3) - CAS(e′1, e′2, e′3) : 2

lr-seq
(R,∆) | (+1) 〈$〉 Γ |= e1 - e

′
1 : τ1 ∆ | Γ |= e2 - e

′
2 : τ2

∆ | Γ |= e1; e2 - e
′
1; e′2 : τ2

lr-seq’
∆ | Γ |= e1 - e

′
1 : τ1 ∆ | Γ |= e2 - e

′
2 : τ2

∆ | Γ |= e1; e2 - e
′
1; e′2 : τ2

3.3 Compatibility lemmas and the fundamental property
The standard proof of soundness of logical refinement judgement is done via so
called “compatibility lemmas”. In our deductive system they are presented as
rules.

Lemma 3.2. If Γ ` e : τ then ∆ | Γ |= e - e : τ .

Proof. By induction on the typing derivation, using the compatibility rules from
Sections 3.1 and 3.2.

21

Notes on formalisation
The formalisation of the calculus is split across various modules in the logrel di-
rectory. The rule fupd-logrel and the monadic rules are formalised in logrel_binary.v.
In addition fupd-logrel gives rise to several ElimModal instances (also defined
in the same file). The primitive and derived compatibility rules are formalised in
fundamental_binary.v alongside the fundamental property Lemma 3.2. The
rest of the rules are formalised in rules.v module.

22

4 Introductory example: fine-grained concur-
rent counter

In this section we go over an illustrative example: a lock-free concurrent counter
implementation that uses atomic CAS refines an implementation that uses lock-
ing. The source code for the two counters is in Figure 2, counteri is a fine-grained
counter whereas counters is a coarse-grained counter implemented using locks.

4.1 General form of relational specifications: a library for
locks

The course grained counter, which we will use as a specification, is imple-
mented using locks. The locks themselves in turn are implemented using atomic
compare-and-swap. In this subsection we sketch the lemmas provided by the
lock library.

Implementation:

TLock := ref 2
newlock : TLock
newlock := ref(false)
acquire : TLock→ 1
acquire := rec acquire x = if CAS(x, false, true) then () else acquire x
release : TLock→ 1
release := λx. x← false

Relational specifications: where ↑logrelN ⊆ E

lr-newlock-r
∀l, l 7→s false −∗ ∆ | Γ |=E t - K[l] : τ

∆ | Γ |=E t - K[newlock] : τ

lr-acquire-r
l 7→s false (l 7→s true −∗ ∆ | Γ |=E t - K[()] : τ)

∆ | Γ |=E t - K[acquire l] : τ

lr-release-r
l 7→s b (l 7→s false −∗ ∆ | Γ |=E t - K[()] : τ)

∆ | Γ |=E t - K[release l] : τ

As one can observe, the relational specifications for symbolic execution on
the right hand side follow a certain pattern. For an expression e that under
precondition P reduces to v with postcondition Q(v), the rule has the following
form:

P ∗ (∀v, Q(v) −∗ ∆ | Γ |=E t - K[v] : τ) −∗ ∆ | Γ |=E t - K[e] : τ

23

The symbolic execution rules for the left hand side be presented in a similar
way:

P ∗ (∀v, Q(v) −∗ ∆ | Γ |= K[v] - t : τ) −∗ ∆ | Γ |= K[e] - t : τ

Notice that for the left hand side rule, the masks in the judgement have to
be the same. This means, in particular, that such rules cannot be applied in
combination with opening an invariant. We will see how to mitigate this issue
in Section 8.1.

Hoare triples and relational specification. In fact, we can take the general
form of the relational specification from the previous paragraph as a basis for
defining a “relational Hoare triple for the left hand side”:

∆ | Γ |= {P } e {Q} , ∀K t τ, �(P ∗ (∀v, Q(v) −∗ ∆ | Γ |= K[v] - t : τ) −∗ ∆ | Γ |= K[e] - t : τ)

Lemma 4.1. For any ∆,Γ it is the case that {P } e {Q}E −∗ ∆ | Γ |= {P } e {Q}

Proof. Unfolding the definitions and using lr-wp-l.

4.2 Coarse-grained and fine-grained counters

read , λx (). !x

incs , λx l. acquire l; letn = !x inx← 1 + n; release l; n

inci , rec inc x = let c = !x in

if CAS(x, c, 1 + c) then c else incx
counters , let l = newlock () in letx = ref(0) in

(read x, λ(). incs x l)
counteri , letx = ref(0) in (read x, λ(). inci x)

Figure 2: Fine-grained and coarse-grained counters

The invariant that is going to link two implementations is

Icnt(l, ci, cs) , ∃n, l 7→s false ∗ cs 7→s n ∗ ci 7→i n

Our goal is to show ` ∆ | ∅ |= counteri - counters : (1→ N)× (1→ N). To do
this we can perform symbolic execution until we reach pairs on both sides; our
goal then becomes

l 7→s false, ci 7→i 0, cs 7→s 0 ` ∆ | ∅ |= (read ci, λ(). inci ci) - (read cs, λ(). incs cs l) : (1→ N)× (1→ N)
At this point we can establish the invariant Icnt(l, ci, cs)

N and apply lr-pair.

24

Thus we have to prove

Icnt(l, ci, cs)
N ` ∆ | ∅ |= λ(). inci ci - λ(). incs cs l : 1→ N (3)

Icnt(l, ci, cs)
N ` ∆ | ∅ |= read ci - read cs : 1→ N (4)

(Proof of Equation (3)). By lr-closure and lr-pure-l, lr-pure-r it suffices to
prove

∆ | ∅ |= inci ci - incs cs l : N

under the assumption that we have the invariant Icnt(l, ci, cs)
N . Performing

some symbolic execution on both sides our goal becomes

∆ | ∅ |= let c = ! ci in if CAS(ci, c, 1 + c) then c else inci ci - acquire l; . . . : N

We proceed by Löb induction; that is, we get an assumption

.(∆ | ∅ |= let c = ! ci in if CAS(ci, c, 1+c) then c else inci ci - acquire l; . . . : N).

We will get rid of . for this hypothesis as soon as we perform a symbolic exe-
cution step on the left (using the monotonicity of .).

At this point we apply lr-rec-l and lr-load-l to get the goal

|V> >\N (∃v, . ci 7→i v ∗ (ci 7→i v −∗ ∆ | ∅ |=>\N K[v] - acquire l; . . . : N).

We can then use the invariant opening rule to obtain

1. The lock resource: l 7→s false;

2. The counter resources: cs 7→s n and ci 7→i n for some n ∈ N;

3. The invariant closing rule: ∃n, l 7→s false ∗ cs 7→s n ∗ ci 7→i n ≡−∗>\N >

True;

4. And the goal without the |V> >\N modality.

We can then frame . ci 7→i n, and introduce ci 7→i n to obtain a new goal

∆ | ∅ |=>\N let c = n in . . . - acquire l; . . . : N.

At this point we cannot really continue the symbolic execution, so we close the
invariant (as we can easily do, because we haven’t actually changed any of the
resources that we were holding) using fupd-logrel. Our new goal is

∆ | ∅ |= let c = n in . . . - acquire l; . . . : N

and we do not hold any resources. After performing a number of pure reductions
on the left had side we reach the goal

∆ | ∅ |= if CAS(ci, n, n+ 1) thenn else inci ci - acquire l; . . . : N.

At this point we apply lr-cas-l, open the invariant and consider two cases:

25

1. The new value of the counter has changed and is no longer n. In that case
CAS fails. However, the state has not been changed and we can easily
close the invariant leaving us with the goal:

∆ | ∅ |= if false thenn else inci ci - acquire l; . . . : N.

which we solve by applying lr-if-false-l and using the induction hypoth-
esis.

2. The counter value has not changed. In this case the goal is

ci 7→i (n+ 1) −∗
∆ | ∅ |=>\N if true thenn else inci ci - acquire l; letn =!cs in cs ← n+1; release l;n : N.

Then, the operation have succeeded. It remains, however, to perform
the counter update on the right hand side. Because the invariant is still
open, we have access to l 7→s false and c 7→s n. Using lr-acquire-r,
lr-store-r, and lr-release-r we can reduce this to

ci 7→i (n+ 1) ∗ cs 7→s (n+ 1) ∗ l 7→s false −∗
∆ | ∅ |=>\N if true thenn else inci ci - n : N.

After this we can close the invariant using fupd-logrel and use lr-pure-l
to finish up with an instance of lr-val:

∆ | ∅ |= n - n : N.

Notes on formalisation
The counter refinement is implemented in examples/counter.v using logically
atomic rules described in Section 8.1. The rules for the lock are derived in
examples/lock.v.

26

5 Ticket lock from the counter specification
In this section we present the details of the ticket-lock vs spin lock refinement
described in the LICS paper. The purpose of this section is to give an detailed
description of the way the rules of ReLoC are used for an actual proof.

ticket-nondup
ticketγ(n) ticketγ(n)

False
newIssuedTickets
|V∃γ, issuedTicketsγ(0)

issueNewTicket
issuedTicketsγ(m)

|VissuedTicketsγ(m+ 1) ∗ ticketγ(m)

Figure 3: Properties of abstract predicates.

Abstract predicates. We use the following abstract predicates:

• ticketγ(m) representing a ticket with the id m from the ticket dispensing
machine with the name γ;

• issuedTicketsγ(m) stating that a total of m tickets have been issued for
the dispensing machine γ;

The predicates themselves are implemented in Iris using ghost state over the
resource algebra Auth(Pdisj(N)). For the purpose of the proof, we are not
concerned with the implementations of the predicates and only require that
they satisfy the rules presented in Figure 3.

The relation linking together two modules (serving as the interpretation for
α) is:

lockInt((lo, ln), l′) , ∃γ. lockInvγ(lo, ln, l′) N .

Lemma 5.1. The following refinement holds:

[α := lockInt] | ∅ |= newlocki - newlocks : 1→ α.

Proof. By lr-closure it suffices to show:

[α := lockInt] | ∅ |= newlocki () - newlocks() : α.

Performing symbolic execution on the left and the right hand sides we get lo 7→i
0 ∗ ln 7→i 0 ∗ isLock(l′, false) and the goal:

[α := lockInt] | ∅ |= (lo, ln) - l′ : α.

By fupd-logrel and lr-return it suffices to prove:

|VlockInt((lo, ln), l′).

27

In other words:
|V∃γ. lockInvγ(lo, ln, l′)

To prove this goal we first create a new ticket dispensing machine with a
fresh name γ using newIssuedTickets. Together with the resources that we
already had, issuedTicketsγ(0) comprises lockInvγ(lo, ln, l′).

To prove the acquire refinement we need the following helper.

Lemma 5.2. Assume the ticket ticketγ(m), and the invariant:

lockInvγ(lo, ln, l′) N ,

linking the two locks together. Then:

[α := lockInt] | ∅ |= wait_loop m lo - acquires l′ : 1

Proof. By Löb induction it suffice to show goal from an assumption:

.(ticketγ(m) −∗
[α := lockInt] | ∅ |= wait_loop m lo - acquires l′ : 1).

(We will get rid of the later modality after performing a symbolic execution
step—so we will ignore the later modality from now on.)

After performing pure symbolic reductions on the left had side our goal
becomes:

[α := lockInt] | ∅ |=
if (m = ! lo) then () elsewait_loop m lo - acquires l′ : 1.

At this point we apply the rule lr-load-l, which allows us to open the
invariant N to get:

• the resources lo 7→i o ∗ ln 7→i n ∗ isLock(l′, b) for some o, n, b;

• issuedTicketsγ(n) and if b then ticketγ(o), for some γ.

After framing and introducing resources our goal is:

[α := lockInt] | ∅ |=>\N
if (m = o) then () elsewait_loop m lo - acquires `′ : 1.

Here we distinguish two cases:

1. Case m = o. In this situation we know that our turn to enter the critical
section has arrived, i.e., it must be the case that b = false. This is the
case because if b = true, then have ticketγ(o) from the invariant N and
ticketγ(m) by assumption. This yields a contradiction by ticket-nondup.

28

Since b = false we can apply lr-acquire-r to update the lock to isLock(l′, true)
and reduce the goal to:

[α := lockInt] | ∅ |=>\N
if (o = o) then () elsewait_loop m lo - () : 1.

We can close the invariant by giving up the original ticket ticketγ(o). The
goal then holds by lr-pure-l and the compatibility property for the unit
type.

2. Case m 6= o. We can immediately close the invariant to restore the masks
on the relational judgement, and reduce the goal to the original statement
of this lem. Finally, we discharge the goal by the induction hypothesis.

Lemma 5.3. The following refinement holds:

[α := lockInt] | ∅ |= acquirei - acquires : α→ 1.

Proof. By lr-closure it suffices to assume the invariant:

lockInvγ(lo, ln, l′) N

for some γ, and show:

[α := lockInt] | ∅ |= acquirei (lo, ln) - acquires l′ : 1.

After applying lr-pure-l, the goal becomes:

[α := lockInt] | ∅ |= K[inci ln] - acquires `′ : 1

where K , letn = [•] inwait_loop n lo.
At this point we can use the atomic rule for the fine-grained counter FG-

increment-atomic-l with the parameters E , >\N andR(n) , issuedTicketsγ(n).
We have to show:

|V> >\N ∃n. ln 7→i n ∗ issuedTicketsγ(n) ∗(ln 7→i n ∗ issuedTicketsγ(n) ≡−∗>\N > True) ∧
(ln 7→i (n+ 1) ∗ issuedTicketsγ(n) −∗
|=>\N K[n] - acquires l′ : 1)

 (5)

At this point we can introduce the update modality by opening the invariant
N and obtaining:

• the resources lo 7→i o ∗ ln 7→i n ∗ isLock(l′, b) for some o, n, b;

• issuedTicketsγ(n) and if b then ticketγ(o), for some γ.

29

We can frame ln 7→i n and issuedTicketsγ(n) in Equation (5), it then remains
to show the conjunction:(ln 7→i n ∗ issuedTicketsγ(n) ≡−∗>\N > True) ∧

(ln 7→i (n+ 1) ∗ issuedTicketsγ(n) −∗
|=>\N K[n] - acquires l′ : 1)

 .

For the first conjunct we just apply the invariant closing proposition and
show that the invariant lockInvγ(lo, ln, l′) still holds. Since we have not changed
any ghost state it is trivial.

For the second conjunct, assume that we have ln 7→i (n + 1) and issuedTicketsγ(n).
We can apply the update issueNewTicket to get:

issuedTicketsγ(n+ 1) ∗ ticketγ(n)

We restore the invariant using these resources and ln 7→i (n + 1), which leaves
us with the goal:

[α := lockInt] | ∅ |= wait_loop n lo - acquires l′ : 1

which reduces to the statement of Lemma 5.2.

Similarly we can show the refinement for release.

Lemma 5.4. The following refinement holds:

[α := lockInt] | ∅ |= releasei - releases : α→ 1.

Theorem 5.5. The following refinement holds:

pack(newlocks, acquires, releases)
- pack(newlocki, acquirei, releasei)

: ∃α.(1→ α)× (α→ 1)× (α→ 1).

Proof. The theorem follows from lr-pack (with lockInt as the witness for the
existential type), lr-pair and Lemmas 5.1, 5.3 and 5.4.

30

6 Interpretation in Iris
The calculus defined in Section 3 is interpreted in Iris. The interpretation of
the judgements are not very different from the encoding of [3].

6.1 Ghost thread pool
The thread pool (unital) resource algebra is defined as follows.

TP , N fin−⇀ Ex(Expr)

Given a thread pool T ∈ ThreadPool we can obtain T̄ ∈ TP by folding over
the list, i.e. [e1, . . . , en] = {1 7→ e1, . . . , n 7→ en}. The resource algebra of
configurations is obtained as a product

Cfg , Auth(TP×H)

where H is the heap resource algebra Loc fin−⇀ Q×Ag(Val). The basic assertions
are then defined as follows.

l 7→s v , ◦ (∅, {l 7→ (1, ag(v))})

j Z⇒ e , ◦ ({j 7→ ex(e)}, ∅)
Notice that, as usual, l 7→s v is a timeless proposition.

For the rest of this section we assume that Iris is instantiated with the
configuration RA under the name γcfg. The global invariant that we want to
maintain for the configuration RA is spec_ctx (we implicitly coerce thread pools
and states to the corresponding RAs).

spec_ctx(ρ) , ∃T σ, pρ→∗ (T, σ)q ∗ • (T, σ) γcfg specN

The invariant states that the current configuration that we own is reachable
from some original configuration ρ.

Rules for Cfg. We have the following “symbolic execution” updates for the
configuration RA.

step-pure
e→pure e

′ ↑specN ⊆ E spec_ctx(ρ)
j Z⇒K[e] ≡−∗E E j Z⇒K[e′]

step-alloc
↑specN ⊆ E spec_ctx(ρ)

j Z⇒K[fork {e}] ≡−∗E E ∃i, j Z⇒K[()] ∗ i Z⇒ e

step-alloc
↑specN ⊆ E spec_ctx(ρ)

j Z⇒K[ref(v)] ≡−∗E E ∃l, j Z⇒K[l] ∗ l 7→s v

31

step-load
l 7→s v ↑specN ⊆ E spec_ctx(ρ)
j Z⇒K[! l] ≡−∗E E j Z⇒K[v] ∗ l 7→s v

step-store
l 7→s v ↑specN ⊆ E spec_ctx(ρ)
j Z⇒K[l← v′] ≡−∗E E j Z⇒K[()] ∗ l 7→s v

′

step-cas-fail
l 7→s v v 6= v1 ↑specN ⊆ E spec_ctx(ρ)
j Z⇒K[CAS(l, v1, v2)] ≡−∗E E j Z⇒K[false] ∗ l 7→s v

step-cas-suc
l 7→s v1 ↑specN ⊆ E spec_ctx(ρ)

j Z⇒K[CAS(l, v1, v2)] ≡−∗E E j Z⇒K[true] ∗ l 7→s v2

6.2 Encoding logical relations
The semantic domain, in which we are going to interpret the types is a set of
persistent predicates over Val×Val:

D , Val×Val ne−→ iProp
An interpretation function J−K takes a type and a list List D of semantic

types, which is used to interpret type variables. The interpretation of types and
the interpretation of expressions are defined simultaneously.

J−Ke(E) : (List D ne−→ D) ne−→ List D ne−→ Expr× Expr ne−→ iProp
JτKe(E)(∆)(e1, e2) , ∀j K, j Z⇒K[e2] ≡−∗> E wp e1 {v.∃v′, j Z⇒K[v′] ∗ τ(∆)(v, v′)}

We describe the interpretation of types using set-theoretic notation; it is
straightforward to transform every such description into a predicate.

J1K∆ , {((), ())}
J2K∆ , {(true, true), (false, false)}
JNK∆ , {(n, n) | n ∈ N}
Jτ × σK∆ , {((v1, v2), (v′1, v′2)) | (v1, v

′
1) ∈ JτK∆ ∗ (v2, v

′
2) ∈ JσK∆}

Jτ + σK∆ , {(inl v, inl v′) | (v, v′) ∈ JτK∆} ∪ {(inr v, inr v′) | (v, v′) ∈ JσK∆}
Jτ → σK∆ , {(v, v′) | �(∀(w,w′) ∈ JτK∆, JσKe(>)(∆)(v w, v′ w′)}
J∀(τ)K∆ , {(v, v′) | �(∀τi ∈ D, JτKe(>)(τi :: ∆)(v [], v′ [])}
J∃(τ)K∆ , {(pack v, pack v′) | �(∃τi ∈ D, JτK(τi::∆)(v, v′)}
Jµ(τ)K∆ , {(fold v, fold v′) | .JτK(µ(τ)::∆)(v, v′)}
Irev : Loc× Loc→ D ne−→ iProp
Irev(l, l′, τ i) , ∃v v′, l 7→i v ∗ l′ 7→s v

′ ∗ τi(v, v′)
Jref τK∆ , {(l, l′) | Irev(l, l′, JτK∆) logN.(l,l′)

}
JxiK∆ , �∆(i)

32

Note that in the interpretation of the recursive types, the truth-value JτK(µ(τ)::∆)(v, v′)
is under the later modality, which allows to define the interpretation of Jµ(τ)K
as a fixed point.

Remark 6.1. In the interpretation of type variables we use the persistence
modality. This ensures that the value interpretation JτK∆ is persistent, even if
some relations in ∆ are not. However, morally any relation in ∆ should be
persistence. Consider, for instance, a refinement at type α. By the definition
of the value interpretation we would have to prove ∆(α) using only persistent
resources, and that might be hard or impossible if ∆(α) is not persistent itself.
For instance, if ∆(α)(v1, v2) is a heap assertion, then �∆(α)(v1, v2) is logically
equivalent to False.

Remark 6.2. In the definitions related to the ghost thread pool we use the
invariant name specN, whereas for the interpretation of the reference types we
use the invariant name logN. To that extent we assume that both specN and
logN share common namespace logrelN, which is used in the rules in Section 3.

Proposition 6.3. The value interpretation is persistent: ∀τ ∆w, persistent(JτK∆(w)).

Proof. By induction on τ .

The interpretation of environments is defined as follows.

JΓK∗ : (List D)→ (Map Var (Val×Val))→ iProp
JΓK∗∆(~v) , pdom(~v) = dom(Γ)q ∗ ∀(x, τ) ∈ Γ, JτK∆(~v(x))

Proposition 6.4. For any ∆,Γ, τ , ~v ∈ Map Var (Val × Val), and for any
(v, v′) ∈ Val×Val, x ∈ Var,

JτK∆(v, v′) ∗ JΓK∗∆(~v) ` Jx : τ,ΓK∗∆(~v [x←(v, v′)])

Note that the other direction does not hold if Γ(x) is already defined.

Proposition 6.5. For any ∆,Γ, τ , ~v ∈ Map Var (Val × Val), and for any
(v, v′) ∈ Val×Val, x ∈ Var, such that x 6∈ dom(Γ):

JτK∆(v, v′) ∗ JΓK∗∆(~v) a` Jx : τ,ΓK∗∆(~v [x←(v, v′)])

Next we define an environment substitution. Given a map ~v ∈ Map Var (Val×
Val),

~v1(e) , e[/~v. ∗ 1] where e[/m] is parallel substitution
~v2(e) , e[/~v. ∗ 2] and ~v. ∗ i is πi 〈$〉 ~v

Refinement judgement. The interpretation of the logical refinement judge-
ments is given by

∆ | Γ |=E e - e′ : τ , ∀~v ρ, spec_ctx(ρ) −∗ � JΓK∗∆(~v) −∗ JτKe(E)(∆)(~v1(e), ~v2(e′))

33

6.3 Deriving the symbolic execution rules
In this section we examine how to derive the most general rules such as lr-pure-
l, lr-pure-r, lr-wp-atomic-l, and a new rule lr-step-r.

Rules on the left hand side.
Lemma 6.6. The proof rule lr-pure-l is sound.
Proof. We wish to prove ∆ | Γ |= K[e] - t : τ from .∆ | Γ |= K[e′] - t : τ ,
e→pure e

′ with e and e′ closed. Unfolding the definitions, we are to show

spec_ctx(ρ)∗� JΓK∗∆(~v)∗j Z⇒~v2(K ′[t]) ` |V>wp ~v1(K[e]) {v.∃v′, j Z⇒K ′[v′] ∗ JτK∆(v, v′)}

We can get rid of the fancy update modality and rewrite ~v1(K[e]) as ~v1(K)[~v1(e)]
where we extend the definition of substitution to evaluation contexts. Further-
more, since e is closed, ~v1(e) = e. Thus we are left with proving.

wp ~v1(K)[e] {v.∃v′, j Z⇒K ′[v′] ∗ JτK∆(v, v′)}

And according to wp-bind, it suffices to show

wp e {v.wp ~v1(K)[v] {w.∃w′, j Z⇒K ′[w′] ∗ JτK∆(w,w′)}}

We can then apply wp-lift-lr-pure-step to obtain the goal

spec_ctx(ρ),� JΓK∗∆(~v), j Z⇒ ~v2(K ′[t]),
.∆ | Γ |= K[e′] - t : τ ` .wp e′ {v.wp ~v1(K)[v] {w.∃w′, j Z⇒K ′[w′] ∗ JτK∆(w,w′)}}

We can then get rid of the later modalities on both sides of the turnstile and
apply wp-bind-inv; it then remains to show

spec_ctx(ρ),� JΓK∗∆(~v), j Z⇒ ~v2(K ′[t]),
∆ | Γ |= K[e′] - t : τ ` wp ~v1(K)[e′] {v.∃v′, j Z⇒K ′[v′] ∗ JτK∆(v, v′)}

This follows from instantiating ∆ | Γ |= K[e′] - t : τ with spec_ctx(ρ),
� JΓK∗∆(~v), and j Z⇒ ~v2(K ′[t]).

Lemma 6.7. The proof rule lr-wp-atomic-l is sound.
Proof. Assume that |V> EwpE e {v.∆ | Γ |=E K[v] - t : τ}. Let ~v be such that
JΓK∗∆(~v) and let j and K ′ be such that j Z⇒ ~v2(K ′[t]). We are to show

wp ~v1(K[e]) {v.∃v′, j Z⇒K ′[v′] ∗ JτK∆(v, v′)}.

Because e is closed, ~v1(K[e]) = ~v1(K)[e]. By wp-bind it suffices to show

wp e {v.wp ~v1(K)[v] {v0.∃v′, j Z⇒K ′[v′] ∗ JτK∆(v0, v
′)}}.

Applying wp-mask-mono, wp-atomic and fupd-mono, we can get rid of the fancy
update modality, resulting in the sequent

j Z⇒~v2(K ′[t])∗wpE e {v.∆ | Γ |=E K[v] - t : τ} ` wpE e
{
v. |V> Ewp ~v1(K)[v] {v0.∃v′, j Z⇒K ′[v′] ∗ JτK∆(v0, v

′)}
}
.

Finally, we can apply wp-mono, and the result follows from the definition of
∆ | Γ |=E K[v] - t : τ .

34

Rules on the right hand side.

Lemma 6.8. The proof rule lr-pure-r is sound.

Proof. Unfolding the definitions, we see that we have to show

|V> Ewp ~v1(t) {v.∃v′, j Z⇒K ′[v′] ∗ JτK∆(v, v′)}

from ∆ | Γ |=E t - K[e′] : τ , � JΓK∗∆(~v), and j Z⇒ K ′[~v2(K[e])]. The latter
resource can be rewritten as

j Z⇒K ′[~v2(K)[e]]

since e is closed. By fupd-trans it suffices to show

. . . , j Z⇒K ′[~v2(K)[e]] ` |V> |V
> Ewp ~v1(t) {v.∃v′, j Z⇒K ′[v′] ∗ JτK∆(v, v′)}

Then, by step-pure, we can update this resource to |V> j Z⇒K ′[~v2(K)[e′]], and
cancel the fancy update modality on both sides of the turnstile to obtain

. . . , j Z⇒K ′[~v2(K)[e′]] ` |V> Ewp ~v1(t) {v.∃v′, j Z⇒K ′[v′] ∗ JτK∆(v, v′)}

The result then follows by instantiating ∆ | Γ |=E t - K[e′] : τ with the
appropriate resources.

Using the notation of Section 6.1 we can formulate a general rule for per-
forming symbolic execution on the right hand side of the refinement judgement.

lr-step-r
∀ρ j K ′, spec_ctx(ρ) −∗ (j Z⇒K ′[e] ≡−∗E ∃v, (j Z⇒K ′[v]) ∗ Φ(v)) ∀v, Φ(v) −∗ ∆ | Γ |=E t - K[v] : τ closed(e)

∆ | Γ |=E t - K[e] : τ
Using lr-step-r we can derive all stateful symbolic execution rules for the right
hand side (Section 3.1).

6.4 Soundness
The proof that our logical relation is sound w.r.t. contextual refinement follows a
fairly standard strategy, and it relies on the adequacy of the weakest precondition
calculus in Iris [1].

Definition 6.9. A program e in an initial state σ is adequate for a pure
predicate ϕ : Val → Prop if for any thread pool T and a state σ′ such that
([e], σ)→∗tp (T, σ′):

1. (Safety) For any e′ ∈ T either e′ is a value, or (e′, σ′) is reducible;

2. (Result) If v ∈ T is a value, then ϕ(v) holds.

Note that adequacy itself is a pure statement, formulated outside separation
logic.

35

Theorem 6.10 ([1, Theorem 6]). If ϕ is a pure predicate, and wp e {v. pϕ(v)q}
is derivable in Iris, then e is adequate for ϕ w.r.t. any initial state σ.

Lemma 6.11. If closed(dom Γ, e) and [C] : (Γ ` τ) ⇒ (Γ′ ` τ ′), then
closed(dom Γ′, C[e]).

Proof. By induction on the derivation of the context typing, using the fact that
if ∆ ` t : σ, then closed(dom ∆, t).

Lemma 6.12 (Precongruence). If closed(dom(Γ′), e) and closed(dom(Γ′), e′),
and [C] : (Γ′ ` τ ′)⇒ (Γ ` τ) then

�(∀∆, ∆ | Γ′ |= e - e′ : τ ′) −∗ (∀∆, ∆ | Γ |= C[e] - C[e′] : τ)

Proof. By induction on the context typing derivation. Most of the cases are
trivial. For those context typing judgements that contain typing assumptions
we need to use the fundamental property (Lemma 3.2). For instance, for one of
the cases in which [C] : (Γ′ ` σ)⇒ (Γ ` τ ′ → τ) we have to show

∆ | Γ |= C[e] e2 - C[e′] e2 : τ

from the assumptions that Γ ` e2 : τ ′ and the induction hypothesis

∆ | Γ |= C[e] - C[e′] : τ ′ → τ.

For this we apply the fundamental property to obtain ∆ | Γ |= e2 - e2 : τ ′ and
then use lr-app.

The most tricky case is the context typing rule

[C] : (Γ′ ` σ)⇒ (x : τ, f :(τ → τ ′),Γ ` τ ′)
[rec f x = C] : (Γ′ ` σ)⇒ (Γ ` τ → τ ′)

The goal is

∆ | Γ |= rec f x = C[e] - rec f x = C[e′] : τ → τ ′

and the induction hypothesis then gives us

∆ | (x : τ, f :(τ → τ ′),Γ) |= C[e] - C[e′] : τ ′

with the assumption
�(∀∆, ∆ | Γ′ |= e - e′ : τ).

To reduce the goal we apply the rule lr-rec. We than have to show some
closedness conditions, which are discharged using the closedness assumptions
on e and e′ and Lemma 6.11. The reduced goal that we get is

�(∆ | (x : τ, f :(τ → τ ′),Γ) |= C[e] - C[e′] : τ ′)

which can be obtained from the induction hypothesis. Note the presence of the
� modality in the reduced goal – that is the reason why the assumption for the
lemma had to put under the � modality.

36

Lemma 6.13 (Adequacy of logical relations). If ∆ | ∅ |= e - e′ : τ is derivable
in logic, then e is adequate w.r.t. any initial state for the predicate

ϕ(v) = ∃T ′ σ′ v′, ([e′], ∅)→∗tp ([v′] ++ T ′, σ′) ∧ (ObsType(τ ′)→ v = v′)

One immediate implication of the adequacy lemma is the type safety of the
target language.

Theorem 6.14 (Type safety). If ∅ ` e : τ , then e is safe, i.e. if ([e], σ) →∗tp
(T, σ′) and e′ ∈ T , then either e′ is a value or it is reducible.

Proof. By the fundamental property of logical relations (Lemma 3.2) we obtain
that ∅ | ∅ |= e - e : τ .

Then, by Lemma 6.13, it is the case that e is adequate for some predicate
w.r.t any initial state. Adequacy trivially implies safety.

Theorem 6.15 (Soundness). If closed(dom(Γ), e) and closed(dom(Γ), e′), and
(∀∆, ∆ | Γ |= e - e′ : τ) is derivable in logic, then Γ ` e -ctx e

′ : τ

Proof. 1. Suppose that (∀∆, ∆ | Γ |= e - e′ : τ) and [C] : (Γ ` τ)⇒ (∅ ` τ ′)
for some observable type τ ′

2. Furthermore, suppose that ([C[e1]], ∅) →∗tp ([v] ++ T, σ). We are to show:
∃T ′ σ′, ([C[e2]], ∅)→∗tp ([v] ++ T ′, σ′).

3. By precongruence (Lemma 6.12), (∀∆, ∆ | ∅ |= C[e] - C[e′] : τ ′).

4. The result the follows by adequacy (Lemma 6.13) and the two previous
points.

Notes on formalisation
The encoding presented in this section has been initially formalised by Amin
Timany, Robbert Krebbers, and Lars Birkedal [3, 6]. The main difference is
that we have extended the interpretation with masks, allowing the users of the
logic to open invariants around the refinement judgements.

The ghost thread pool construction and its basic properties are described
in logrel/threadpool.v. The rules for the ghost thread pool are proved in
logrel/rules_threadpool.v. The encoding of the value and expression in-
terpretations is located in logrel/semtypes.v. The refinement judgement is
defined in logrel/logrel_binary.v. Symbolic execution rules (and some other
primitive rules) are proved in logrel/rules.v. Lemma 6.12 and Theorem 6.15
are proved in logrel/contextual_refinement.v and logrel/soundness_binary.v
resp.

37

7 Further examples
In this section we present some further examples demonstrating various features
of the system.

7.1 Representation independence
In this example we will demonstrate how to prove refinement of two represen-
tations of the same abstract data type. We are going to consider an abstract
data type which interface is provided by the following type

TBit , ∃α.α× (α→ α)× (α→ 2)

This is a simple type representing a bit, which consists of the initial state of the
bit, the function that flips the bit, and the function that converts the bit to a
boolean value.

Boolean bit. Perhaps, the simplest implementation of the bit interface is the
one that uses booleans for the internal state.

bitbool , pack(true, λb. b⊕ true, λb. b) : TBit

Natural numbers bit. Our second implementation models a bit by a natural
number from a set {0, 1}.

flipnat , λn. ifn = 0 then 1 else 0 : N→ N

bitnat , pack(1, flipnat, λn. n = 1) : TBit

Refinement. Let Γ, ∆ be arbitrary. We are to prove the following refinement.

Theorem 7.1. The following judgement is derivable.

∆ | Γ |= bitbool - bitnat : TBit

Proof. (We ignore the liftings of Γ since it is not really important). In order to
prove the refinement, we appeal to lr-pack. Thus, we have to pick a relation
τi that would link the underlying types of the two representation. A good
candidate is

τi(b, n) , (b = true ∧ n = 1) ∨ (b = false ∧ n = 0).

It remains to show

(τi,∆) | Γ |= (true, λb. b⊕true, λb. b) - (1, flipnat, λn. n = 1) : α×(α→ α)×(α→ 2).

By repeatedly applying lr-pair we get three new goals

38

• (τi,∆) | Γ |= true - 1 : α, which amounts to showing τi(true, 1) by
lr-val; this holds trivially.

• (τi,∆) | Γ |= λb. b ⊕ true - flipnat : α → α; by lr-closure and lr-rec-
l,lr-rec-r it suffices to show

(b = true∧n = 1)∨(b = false∧n = 0) ` (τi,∆) | Γ |= b⊕true - ifn = 0 then 1 else 0 : α.

That statement is proved by case analysis on b and n, appealing to lr-val.

• (τi,∆) | Γ |= λb. b - λn. n = 1 : α → 2; similar to the previous item, it
suffices to show

(b = true ∧ n = 1) ∨ (b = false ∧ n = 0) ` (τi,∆) | Γ |= b - n = 1 : 2.

This is proved by case analysis and lr-literal.

“Heapification”. Given a module m : TBit that implements a bit interface,
we can construct a module heapify(m) we implements the bit interface by holding
a value of the underlying type of bit from m in a reference, and performing all
the operations on that reference. This is done by the following function.

heapify(m) = unpack m as (init, flip, view) in
let x = init in
let l = newlock () in
let flip’ () = acquire l; x ← flip (!x); release l in
let view’ () = view (!x) in
pack ((), flip’, view’)

Theorem 7.2. For any ∆ and Γ,

∆ | Γ |= heapify(bitbool) - heapify(bitnat) : TBit

Proof. Note that Γ `t heapify(−) : TBit → TBit. Hence, by the fundamental
property, ∆ | Γ |= heapify(−) - heapify(−) : TBit → TBit. The result then
follows by lr-app and Theorem 7.1.

7.2 Irreversible state change
Consider the following Pitts and Stark’s “awkward” example [4]:

e1 := letx = ref(0) inλf. (x← 1; f (); !x)
e2 := letx = ref(1) inλf. (f (); !x)
e3 := λf. (f (); 1)

39

All the functions have the type (1→ 1)→ 1 and are contextually equivalent.
We will show it through a chain of refinements: e1 - e2 - e3 - e1 and use the
transitivity of contextual refinement. Intuitively, the reason why those functions
are equivalent is because the variable x is local and f can only affect the value
of x if it invokes the closure itself.

Notably, the following program is not equivalent to any of the above:

e′ := letx = ref(0) inλf. (x← 0; f ();x← 1; !x)

The reason for that is that the callback f can spawn another thread invoking
the closure. Then, depending on the scheduler, this thread can enter the callback
directly before the !x operation of the original thread commences. Specifically,
consider the following program context K:

let g = [•] in
let f = fun () => fork { g (fun () => ()) }
g f

Then K[e3] always terminates with 1 as the value; on the other hand there
is an execution of K[e′] which terminates in 0:

1. e′ f starts executing, assigning value 0 to x;

2. it then spawns a thread i which is going to execute (e′ id);

3. the main thread continues its executing assigning 1 to x;

4. the main thread then yields control to thread i which enters the body of
(e′ id) and assigns 0 to x;

5. thread i yields to the main thread which performs !x and returns 0.

Lemma 7.3. For any Γ and ∆ it is the case that

∆ | Γ |= e2 - e3 : (1→ 1)→ N

Proof. After applying lr-alloc-l we are left with the goal

x 7→i 1 ` ∆ | Γ |= λf. (f (); !x) - λf. (f (); 1) : (1→ 1)→ N.

At this point we would like to prove the refinement of closures using lr-arrow.
However, the only resources that are going to be available for the refinement
proof are the persistent ones. Intuitively, the reason for that is a closure can
be stored somewhere and invoked at an arbitrary point in the future, when we
might or might not have some non-persistent resources.

For that purpose we are going to put the resource x 7→i 1 in an invariant
x 7→i 1 N , which amounts to saying that each atomic operation has to ensure
that the invariant is still maintained after the execution. Formally, we are to
show

x 7→i 1 N ` ∆ | Γ |= λf. (f (); !x) - λf. (f (); 1) : (1→ 1)→ N.

40

After applying lr-arrow and lr-rec-l, lr-rec-r we are to show

x 7→i 1 N ` ∆ | Γ |= (f1 (); !x) - (f2 (); 1) : (1→ 1)→ N

under the assumption
∆ | Γ |= f1 - f2 : 1→ 1.

Using lr-seq we decompose our goal into two:

1. ∆ | Γ |= f1 () - f2 () : 1;

2. ∆ | Γ |= !x - 1 : N.

The former goal follows from the assumption on f1 and f2 and the compat-
ibility lemmas lr-app, lr-val.

The later goal is established as follows. First, we apply lr-load-l resulting
in

x 7→i 1 N ` |V> >\N ∃v, . x 7→i v ∗ .(x 7→i v −∗ ∆ | Γ |=>\N v - 1 : N)

This allows us to open the invariant to get to

· · · ∗ x 7→i 1 ` ∃v, . x 7→i v ∗ .(x 7→i v −∗ ∆ | Γ |=>\N v - 1 : N)

which we can reduce to

· · · ∗ x 7→i 1 ` ∆ | Γ |=>\N 1 - 1 : N

at this point we have no other choice but to close the invariant (using fupd-
logrel) and end up with

x 7→i 1 N ` ∆ | Γ |= 1 - 1 : N

which is an instance of lr-val.

Lemma 7.4. For any Γ and ∆ it is the case that

∆ | Γ |= e1 - e2 : (1→ 1)→ N

Proof. The proof is similar to the previous one, using a different invariant:

(x 7→i 0 ∗ pending ∨ x 7→i 1 ∗ shot) ∗ y 7→s 1 N .

Lemma 7.5. For any Γ and ∆ it is the case that

∆ | Γ |= e3 - e1 : (1→ 1)→ N

Proof. The proof is similar to the previous one, using a different invariant:

x 7→s 0 ∗ pending ∨ x 7→s 1 ∗ shot N .

41

Notes on formalization
The representation independence example is formalized in examples/bit.v.
The irreversible state change example are refinement1, refinement2 and refinement25
in examples/various.v.

42

8 Notes on logical atomicity
8.1 Logically atomic symbolic execution rules for com-

pound commands
To facilitate composability, we would like to provide free-standing rules for sym-
bolic execution of compound statements on both sides of the refinement judge-
ment. Let’s return to the counter example from Section 4.2. For instance, in
order to prove Equation (4), we would like to have rules for symbolically exe-
cuting read on the LHS and on the RHS, and then use those rules for proving
the refinement. However, consider what happens if we write a lemma for sym-
bolically executing read on the left hand side, in the style of the rules from
Section 3.2.

counter-read-l
ci 7→i n ∆ | Γ |= K[n] - t : τ

∆ | Γ |= K[read ci ()] - t : τ

Such rule, albeit sound, is not going to be helpful with proving Equation (4): in
order to apply the rule we need to obtain ci 7→i n; for that we have to open up
the invariant. However, once the invariant is open, we are left with a masked
logical relation of the form ∆ | Γ |=E\↑N e - t : τ . Hence, the counter-read-l
is not applicable. Furthermore, we cannot write down a sound rule for read that
would worked for arbitrary masked refinement judgement. The same argument
applies to a seemingly standard rule for inci:

FG-increment-l
x 7→i n x 7→i (n+ 1) −∗ ∆ | Γ |= K[()] - t : τ

∆ | Γ |= K[inci x] - t : τ

The reason for this is neither read nor inci are atomic, as they are compound
expressions. However, the expressions are logically atomic, i.e. it behaves “as
if” it is physically atomic. In a sense both of those functions have a single deter-
mined linearisation point. To provide sensible reusable rules we take inspiration
from the encoding of logically atomic Hoare triples. The proposed rules are
thus:
counter-read-atomic-l

�(|V> E ∃n, x 7→i n ∗R(n)∗
(x 7→i n ∗R(n) ≡−∗E > True) ∧ (x 7→i n ∗R(n) −∗ ∆ | Γ |=E K[n] - t : τ))

∆ | Γ |= K[read x ()] - t : τ

FG-increment-atomic-l
�(|V> E ∃n, x 7→i n ∗R(n)∗

(x 7→i n ∗R(n) ≡−∗E > True) ∧ (x 7→i (n+ 1) ∗R(n) −∗ ∆ | Γ |=E K[n] - t : τ))
∆ | Γ |= K[inci x] - t : τ

Consider the inci rule. Informally, the reason why inci x is logically atomic is
because it does only two things with the heap: it either reads the value of x (this

43

cannot break any invariants or resources held by other threads), and it either
succeeds in incrementing the counter (in an atomic fashion, using compare-and-
swap) or it fails to do so, and starts over. In order to understand the logically
atomic rule we must think of a way of (symbolically) performing those three
steps whenever the resources that we need are shared between threads.

First of all, instead of requiring the resource x 7→i n, we require a way of
obtaining such a resource. One such a way of obtaining x 7→i n is by opening
an invariant; however, an invariant will typically contain more resources then
needed. In order not to throw those resources away we collected them in a frame
R(n).

Secondly, the atomic compare-and-swap can either succeed or fail. If it
succeeds then we have managed to update our resources to x 7→i (n + 1), and
we can proceed with proving ∆ | Γ |=E K[n] - t : τ with that information. This
explains the (x 7→i (n+ 1) ∗R(n) −∗ ∆ | Γ |=E K[()] - t : τ) clause.

If, however, the compare-and-swap fails, then we need to be able to restart
the whole computation. For that we must be able to return x 7→i n to the
invariant. Hence the (x 7→i n ∗R(n) ≡−∗E > True) clause.

Finally, we know that the computation either succeeds or has to be restarted
– but not both. Hence the last two clauses described here are connected by an
intuitionistic conjunction (∧), instead of the separating conjunction (∗).

Symbolic execution of compound statements on the right hand side.
There is no need of writing a logically atomic rule for the right-hand side of
a logical refinement. The reason for that is that we can always make multiple
steps on the right hand side for each single step on the left hand side, even under
an opened invariant. The following rule is thus provable using lr-acquire-r,
lr-release-r:
CG-increment-r
x 7→s n l 7→s false (x 7→s (n+ 1) ∗ l 7→s false −∗ ∆ | Γ |=E t - K[n] : τ)

∆ | Γ |=E t - K[incs x l] : τ

Using the logically atomic rule. We can now use FG-increment-atomic-l
to actually prove refinement (3).

Icnt(l, ci, cs)
N ` ∆ | ∅ |= λ(). inci ci - λ(). incs cs l : 1→ N

Since the expressions on both sides are functions, we can apply lr-closure and
lr-pure-l, lr-pure-r to reduce the goal to:

Icnt(l, ci, cs)
N ` ∆ | ∅ |= inci ci - incs cs l : N

At this point we apply FG-increment-atomic-l withR(n) = isLock(`, false)∗
cs 7→s n. After getting rid of the persistence modality, we get a new goal:

Icnt(l, ci, cs)
N ` |V> >\↑N ∃n, ci 7→i n ∗ l 7→ false ∗ cs 7→s n ∗ . . .

44

At this point we can open up the invariant, thus getting rid of the fancy update
modality. The contents of the invariant provides us with a witness for the
existential quantifier and allows us to frame the first three conjuncts. We are
left with showing the conjunction

(ci 7→i n ∗ l 7→s false ∗ cs 7→s n ≡−∗>\↑N > True)∧
(ci 7→i (n+ 1) ∗ l 7→s false ∗ cs 7→s n −∗ ∆ | Γ |=>\↑N n - . . . : N)

from the invariant closing formula

. Icnt ≡−∗>\↑N > True.

The former conjunct follows direction from the invariant closing formula. It
thus remains to show ∆ | Γ |=>\↑N n - incs cs l : N from the resources

(. Icnt ≡−∗>\↑N > True) ∗ ci 7→i (n+ 1) ∗ l 7→s false ∗ cs 7→s n.

The proof then proceeds as usual, by symbolically executing the right hand
side and closing the invariant.

8.2 General form of a logically atomic relational specifi-
cation

The general form of logically atomic rules for logical refinements is thus the
following:

R2 �(|V> E ∃x, P (x) ∗R1(x)∗
(P (x) ∗R1(x) ≡−∗E > True) ∧ (∀v, Q(x, v) ∗R1(x) ∗R2 −∗ ∆ | Γ |=E K[v] - t : τ))

∆ | Γ |= K[e] - t : τ
where P : X → iProp is a predicate describing consumed resources and

Q : X × Val → iProp is a predicated describing produced resources. In this
version, in addition to having an invariant frame R1 : X → iProp that comprises
the persistent resource P (x) ∗ R1(x) together with the “precondition”, we add
an ephemeral frame R2 containing all the non-persistent resources we had prior
to applying the rule. We get access to those resources once again when we are
ready to prove the new goal ∆ | Γ |=E K[v] - t : τ .

The reason for including this frame is mainly technical: the other premise
of the rule resides behind the persistently modality. In order to prove such a
premise we have to give up all the ephemeral resources. However, we don’t
really want to throw away all the non-persistent resources that we have, so we
give them up only temporarily. Such resources might be required, for example,
to close the invariant once the new goal is obtained.

8.3 Atomic triples
Recall the general form of symbolic execution rules and relational triples from
Section 4.1. The idea here is that in Iris one defines Hoare triples through

45

weakest precondition. In a similar way we define relational triples through the
general for of a symbolic execution rule.

∆ | Γ |= {P } e {Q} , ∀K t τ, �(P ∗ (∀v, Q(v) −∗ ∆ | Γ |= K[v] - t : τ) −∗ ∆ | Γ |= K[e] - t : τ)

We would like to take the same approach to define a relational version of logi-
cally atomic triples (see [2, Section 7] and the documentation for iris-atomic1).
Moreover we would like to have something similar to Lemma 4.1 allowing us to
reuse proofs of regular atomic triples.

Atomic triples. The following is the definition of logically atomic triples from
iris-atomic.

For α : A→ iProp and β : A×Val→ iProp and masks Ei, Eo define

〈x.α(x)〉 e 〈v, β(x, v)〉Ei, Eo
, ∀P Q,

(P ≡−∗Eo Ei ∃x : A,α(x)∗
((α(x) ≡−∗Ei Eo P) ∧ (∀v, β(x, v) ≡−∗Ei Eo Q(v)))) −∗ {P } e {Q}>

Relational atomic triples.

∆; Γ |=E 〈x.α(x)〉 e 〈v, β(x, v)〉 , ∀K t τ R1R2,

(R2 ∗�(|V> E ∃x : A,α(x) ∗R1(x)∗
(α(x) ∗R1(x) ≡−∗E > True)∧

(∀v, β(x, v) ∗R1(x) ∗R2 −∗ ∆ | Γ |=E K[v] - t : τ))) −∗ ∆ | Γ |= K[e] - t : τ

Some differences with the regular/unary version:
• We explicitly have two types of frames R1 and R2;

• We can close the invariant (in case the computation is unsuccessful, or
access the state without changing it);

• When we succeed we do not close the invariant directly – rather, we get
a masked logical relation as a goal. This is needed in case we have to
perform some executions on the right hand side before we can close the
invariant.

It is the last point that actually prevents us from lifting atomic Hoare triples
to relational Hoare triples inside the logic. However, we can prove such a lifting
inside the model:
Theorem 8.1. Given 〈x.α(x)〉 e 〈v, β(x, v)〉E,> one can obtain ∆; Γ |=E 〈x.α(x)〉 e 〈v, β(x, v)〉
for any ∆,Γ.
Proof. After unfolding the definitions, we get the resource j Z⇒ K ′[t] for the
RHS. Then we apply the logically atomic triple with P , R2 ∗ j Z⇒K ′[t]. The
viewshifts can be provided directly.

1https://gitlab.mpi-sws.org/FP/iris-atomic

46

https://gitlab.mpi-sws.org/FP/iris-atomic

References
[1] Ralf Jung et al. “Iris from the ground up: A modular foundation for higher-

order concurrent separation logic”. In: Submitted for publication (2017).
[2] Ralf Jung et al. “Iris: Monoids and invariants as an orthogonal basis for

concurrent reasoning”. In: POPL. 2015, pp. 637–650.
[3] Robbert Krebbers, Amin Timany, and Lars Birkedal. “Interactive proofs

in higher-order concurrent separation logic”. In: POPL. 2017, pp. 205–217.
[4] A. M. Pitts and I. D. B. Stark. “Higher Order Operational Techniques in

Semantics”. In: ed. by Andrew D. Gordon and Andrew M. Pitts. New York,
NY, USA: Cambridge University Press, 1998. Chap. Operational Reasoning
for Functions with Local State, pp. 227–274. isbn: 0-521-63168-8. url:
http://dl.acm.org/citation.cfm?id=309656.309671.

[5] Steven Schäfer, Tobias Tebbi, and Gert Smolka. “Autosubst: Reasoning
with de bruijn terms and parallel substitutions”. In: ITP. Vol. 9236. LNCS.
2015, pp. 359–374.

[6] Amin Timany, Robbert Krebbers, and Lars Birkedal. “Logical Relations
in Iris”. In: CoqPL 2017: The Third International Workshop on Coq for
Programming Languages. CoqPL. 2017.

47

http://dl.acm.org/citation.cfm?id=309656.309671

	1 Introduction
	2 The object language
	2.1 Syntax and operational semantics
	2.2 The type system
	2.3 Contextual equivalence and contextual refinement

	3 The calculus
	3.1 Primitive rules
	3.2 Derived rules
	3.3 Compatibility lemmas and the fundamental property

	4 Introductory example: fine-grained concurrent counter
	4.1 General form of relational specifications: a library for locks
	4.2 Coarse-grained and fine-grained counters

	5 Ticket lock from the counter specification
	6 Interpretation in Iris
	6.1 Ghost thread pool
	6.2 Encoding logical relations
	6.3 Deriving the symbolic execution rules
	6.4 Soundness

	7 Further examples
	7.1 Representation independence
	7.2 Irreversible state change

	8 Notes on logical atomicity
	8.1 Logically atomic symbolic execution rules for compound commands
	8.2 General form of a logically atomic relational specification
	8.3 Atomic triples

