
Semi-Automated Reasoning
About Non-Determinism in C Expressions

Léon Gondelman1

joint work with Dan Frumin1 and Robbert Krebbers2

8 April, 2019 @ ESOP, Prague

1 Radboud University Nijmegen 2 Delft University of Technology

April 10, 2019

Lon Gondelman

0

Non-determinism in C expressions

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("%d, %d\n", x, y);

}

According to the C standard, the order of evaluation is unspecified,
e.g., compilers are free to choose their evaluation strategy

. . . so we would expect as the outcome either ”4, 7” or ”3, 7”

1

Unexpectedly

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("%d, %d\n", x, y);

}

However, a small experiment with existing compilers gives

compiler outcome warnings

compcert 4, 7 no

clang 4, 7 yes

gcc-4.9 4, 8 no

1

Undefined behavior

int main() {

int x;

int y = (x = 3) + (x = 4);

printf("%d, %d\n", x, y);

}

According to the C standard, this program violates the sequence point restriction
due to two unsequenced writes of the same variable x

A sequence point violation results in the undefined behavior
i.e., the program is allowed do anything it is even allowed to crash

2

The goal

The problem: sequence point violations may cause a C program
to crash or to have arbitrary results.

The goal: we need a framework that, besides the functional correctness,
ensures the absence of undefined behavior for any evaluation order.

{P} e {Q} =⇒
functional correctness

∧ no sequence point violations

∧ no other undefined behavior

3

The goal

The problem: sequence point violations may cause a C program
to crash or to have arbitrary results.

The goal: we need a framework that, besides the functional correctness,
ensures the absence of undefined behavior for any evaluation order.

{r 7→ i ∗ c 7→ j}
*r= *r ∗ (++(*c));

{v . v = i·(j+1) ∧ r 7→ i·(j+1) ∗ c 7→ j + 1}

3

(Krebbers POPL’14)

Observation: view non-determinism through concurrency
Idea: use concurrent separation logic

{P1} e1 {Ψ1} {P2} e2 {Ψ2} ∀v1 v2.Ψ1 v1 ∗Ψ2 v2 ` Φ(w1 J}K w2)

{P1 ∗ P2} e1 } e2 {Φ}

With the rules of this logic we can

- split the memory resources into two disjoint parts

- independently prove that each subexpression executes safely in its own part

Disjointedness ⇒ no sequence point violations

4

(Krebbers POPL’14)

Observation: view non-determinism through concurrency
Idea: use concurrent separation logic

{P1} e1 {Ψ1} {P2} e2 {Ψ2} ∀v1 v2.Ψ1 v1 ∗Ψ2 v2 ` Φ(w1 J}K w2)

{P1 ∗ P2} e1 } e2 {Φ}

With the rules of this logic we can

- split the memory resources into two disjoint parts

- independently prove that each subexpression executes safely in its own part

Disjointedness ⇒ no sequence point violations

4

(Krebbers POPL’14)

Observation: view non-determinism through concurrency
Idea: use concurrent separation logic

{P1} e1 {Ψ1} {P2} e2 {Ψ2} ∀v1 v2.Ψ1 v1 ∗Ψ2 v2 ` Φ(w1 J}K w2)

{P1 ∗ P2} e1 } e2 {Φ}

With the rules of this logic we can

- split the memory resources into two disjoint parts

- independently prove that each subexpression executes safely in its own part

Disjointedness ⇒ no sequence point violations

4

Limitations of Krebbers’s program logic

1. The program logic is difficult to extend with new features.

2. The proof process is tedious and has no support for automation:

- we have to subdivide resources manually all the time

- and to infer the intermediate postconditions.

{P1} e1 {Ψ1} {P2} e2 {Ψ2} ∀v1 v2.Ψ1 v1 ∗Ψ2 v2 ` Φ(w1 J}K w2)

{P1 ∗ P2} e1 } e2 {Φ}

=⇒ Such rules cannot be applied in an algorithmic fashion.

5

Limitations of Krebbers’s program logic

1. The program logic is difficult to extend with new features.

2. The proof process is tedious and has no support for automation:

- we have to subdivide resources manually all the time

- and to infer the intermediate postconditions.

{P1} e1 {Ψ1} {P2} e2 {Ψ2} ∀v1 v2.Ψ1 v1 ∗Ψ2 v2 ` Φ(w1 J}K w2)

{P1 ∗ P2} e1 } e2 {Φ}

=⇒ Such rules cannot be applied in an algorithmic fashion.

5

Limitations of Krebbers’s program logic

1. The program logic is difficult to extend with new features.

2. The proof process is tedious and has no support for automation:

- we have to subdivide resources manually all the time

- and to infer the intermediate postconditions.

{P1} e1 {Ψ1} {P2} e2 {Ψ2} ∀v1 v2.Ψ1 v1 ∗Ψ2 v2 ` Φ(w1 J}K w2)

{P1 ∗ P2} e1 } e2 {Φ}

=⇒ Such rules cannot be applied in an algorithmic fashion.

5

Limitations of Krebbers’s program logic

1. The program logic is difficult to extend with new features.

2. The proof process is tedious and has no support for automation:

- we have to subdivide resources manually all the time

- and to infer the intermediate postconditions.

{P1} e1 {Ψ1} {P2} e2 {Ψ2} ∀v1 v2.Ψ1 v1 ∗Ψ2 v2 ` Φ(w1 J}K w2)

{P1 ∗ P2} e1 } e2 {Φ}

=⇒ Such rules cannot be applied in an algorithmic fashion.

5

This paper:

Redesign Krebbers’s program logic and

turn it into a semi-automated procedure

5

Contributions

{P} e {Q} , P ` wp e {Q}

wp e {Q}

C
J·K−→ ML|| wpmon JeK {Q ′}

Iris

ghost state

Coq tactics
. . .

vcgen symbolic

execution

Contribution 1:

A redesign of Krebbers’s logic using

a weakest precondition calculus.

⇒ makes automation possible

Contribution 2:

A monadic semantics of C non-determinism

by translation into a concurrent ML language.

⇒ makes the semantics declarative

Contribution 3:

A layered model of our program logic

built on top of the Iris framework

⇒ modular and expresive logic, Coq tactics

Contribution 4:

A symbolic execution algorithm

integrated into an interactive vcgen

⇒ useful in an interactive theorem prover

Contribution 5:

6

Contributions

{P} e {Q} , P ` wp e {Q}

wp e {Q}

C
J·K−→ ML||

wpmon JeK {Q ′}

Iris

ghost state

Coq tactics
. . .

vcgen symbolic

execution

Contribution 1:

A redesign of Krebbers’s logic using

a weakest precondition calculus.

⇒ makes automation possible

Contribution 2:

A monadic semantics of C non-determinism

by translation into a concurrent ML language.

⇒ makes the semantics declarative

Contribution 3:

A layered model of our program logic

built on top of the Iris framework

⇒ modular and expresive logic, Coq tactics

Contribution 4:

A symbolic execution algorithm

integrated into an interactive vcgen

⇒ useful in an interactive theorem prover

Contribution 5:

7

Contributions

{P} e {Q} , P ` wp e {Q}

wp e {Q}

C
J·K−→ ML|| wpmon JeK {Q ′}

Iris

ghost state

Coq tactics
. . .

vcgen symbolic

execution

Contribution 1:

A redesign of Krebbers’s logic using

a weakest precondition calculus.

⇒ makes automation possible

Contribution 2:

A monadic semantics of C non-determinism

by translation into a concurrent ML language.

⇒ makes the semantics declarative

Contribution 3:

A layered model of our program logic

built on top of the Iris framework

⇒ modular and expresive logic, Coq tactics

Contribution 4:

A symbolic execution algorithm

integrated into an interactive vcgen

⇒ useful in an interactive theorem prover

Contribution 5:

8

Contributions

{P} e {Q} , P ` wp e {Q}

wp e {Q}

C
J·K−→ ML|| wpmon JeK {Q ′}

Iris

ghost state

Coq tactics
. . .

vcgen symbolic

execution

Contribution 1:

A redesign of Krebbers’s logic using

a weakest precondition calculus.

⇒ makes automation possible

Contribution 2:

A monadic semantics of C non-determinism

by translation into a concurrent ML language.

⇒ makes the semantics declarative

Contribution 3:

A layered model of our program logic

built on top of the Iris framework

⇒ modular and expresive logic, Coq tactics

Contribution 4:

A symbolic execution algorithm

integrated into an interactive vcgen

⇒ useful in an interactive theorem prover

Contribution 5:

9

Contributions

{P} e {Q} , P ` wp e {Q}

wp e {Q}

C
J·K−→ ML|| wpmon JeK {Q ′}

Iris

ghost state

Coq tactics
. . .

vcgen symbolic

execution

Contribution 1:

A redesign of Krebbers’s logic using

a weakest precondition calculus.

⇒ makes automation possible

Contribution 2:

A monadic semantics of C non-determinism

by translation into a concurrent ML language.

⇒ makes the semantics declarative

Contribution 3:

A layered model of our program logic

built on top of the Iris framework

⇒ modular and expresive logic, Coq tactics

Contribution 4:

A symbolic execution algorithm

integrated into an interactive vcgen

⇒ useful in an interactive theorem prover

Contribution 5:

9

This talk:

Symbolic execution algorithm and vcgen

9

Key idea

Turn the program logic into an algorithm procedure

using a novel symbolic execution algorithm:

input output

precondition value

program 99K (strongest) postcondition

frame = resources not used

10

Key idea

Turn the program logic into an algorithm procedure

using a novel symbolic execution algorithm:

input output

r 7→ i ∗ c 7→ j ∗ d 7→ k i·(j+1)

*r= *r ∗ (++(*c)); 99K r 7→ i·(j+1) ∗ c 7→ j + 1

d 7→ k

10

Symbolic execution algorithm

}

P

e1 e2

P

v1 Q1 R1

R1

v2 Q2 R2

v1 J}K v2 Q1 ∗ Q2 R2

The evaluation order in the symbolic
execution algorithm does not matter:

(P , e)
symb. exec.−−−−−−→ (w,Q,R)

P ` wp e {v. v = w ∗ Q} ∗ R

11

Symbolic execution algorithm

}

P

e1 e2

P

v1 Q1 R1

R1

v2 Q2 R2

v1 J}K v2 Q1 ∗ Q2 R2

The evaluation order in the symbolic
execution algorithm does not matter:

(P , e)
symb. exec.−−−−−−→ (w,Q,R)

P ` wp e {v. v = w ∗ Q} ∗ R

11

Symbolic execution algorithm

}

P

e1 e2

P

v1 Q1 R1

R1

v2 Q2 R2

v1 J}K v2 Q1 ∗ Q2 R2

The evaluation order in the symbolic
execution algorithm does not matter:

(P , e)
symb. exec.−−−−−−→ (w,Q,R)

P ` wp e {v. v = w ∗ Q} ∗ R

11

Symbolic execution algorithm

}

P

e1 e2

P

v1 Q1 R1

R1

v2 Q2 R2

v1 J}K v2 Q1 ∗ Q2 R2

The evaluation order in the symbolic
execution algorithm does not matter:

(P , e)
symb. exec.−−−−−−→ (w,Q,R)

P ` wp e {v. v = w ∗ Q} ∗ R

11

Symbolic execution algorithm

}

P

e1 e2

P

v1 Q1 R1

R1

v2 Q2 R2

v1 J}K v2 Q1 ∗ Q2 R2

The evaluation order in the symbolic
execution algorithm does not matter:

(P , e)
symb. exec.−−−−−−→ (w,Q,R)

P ` wp e {v. v = w ∗ Q} ∗ R

11

Symbolic execution algorithm

}

P

e1 e2

P

v1 Q1 R1

R1

v2 Q2 R2

v1 J}K v2 Q1 ∗ Q2 R2

The evaluation order in the symbolic
execution algorithm does not matter:

(P , e)
symb. exec.−−−−−−→ (w,Q,R)

P ` wp e {v. v = w ∗ Q} ∗ R

11

Symbolic execution algorithm

}

P

e1 e2

P

v1 Q1 R1

R1

v2 Q2 R2

v1 J}K v2 Q1 ∗ Q2 R2

The evaluation order in the symbolic
execution algorithm does not matter:

(P , e)
symb. exec.−−−−−−→ (w,Q,R)

P ` wp e {v. v = w ∗ Q} ∗ R

12

Towards automation

Symbolic execution algorithm that computes the frame allows

to apply the program logic rules in an algorithmic manner:

(P , e1)
symb. exec.−−−−−−→ (w1,Q,R) R ` wp e2 {w2.Q −∗ Φ (w1 J}K w2)}

P ` wp (e1 } e2) {Φ}

Compare this with applying the rule that does not use symbolic execution:

P1 ` wp e1 {Ψ1} P2 ` wp e2 {Ψ2} (∀w1w2.Ψ1 w1 ∗Ψ2 w2 −∗ Φ(w1 J}K w2))

P1 ∗ P2 ` wp (e1 } e2) {Φ}

13

Towards automation

Symbolic execution algorithm that computes the frame allows

to apply the program logic rules in an algorithmic manner:

(P , e1)
symb. exec.−−−−−−→ (w1,Q,R) R ` wp e2 {w2.Q −∗ Φ (w1 J}K w2)}

P ` wp (e1 } e2) {Φ}

However, the algorithm itself may fail for several reasons:

- the program is not of the right shape (loop, function call, . . .)

- the precondition is not of the right shape (needed resource is missing, . . .)

13

Vcgen

Key idea: design an interactive verification condition generator (vcgen).

interactive

proof

vcgen

procedure

calls

simplifies the proof goal

Vcgen automates the proof as long as the symbolic executor does not fail.

When the symbolic executor fails, vcgen does not fail itself, but

- returns to the user a partially solved goal

- from which it can be called back after the user helped out.

14

∃k ≤ n.

Hr: r 7→ 1

Hc: c 7→ 0

IH: ∀k.

B

r 7→ fact(k) ∗ c 7→ k ∗ k ≤ n −∗
wp (while(..){...})

{r 7→ fact(n) ∗ c 7→ n}

Proof.

generalize Hr Hc. induction. while spec.

vcgen.

- vcgen. apply IH.

- eauto.

Qed.

while(*c < n){
*r= *r ∗ (++(*c));

}

Post-condition: r 7→ fact(n) ∗ c 7→ n

15

∃k ≤ n.
Hr: r 7→ fact(k)

Hc: c 7→ k

Hk: k < n

IH: ∀k.

B

r 7→ fact(k) ∗ c 7→ k ∗ k ≤ n −∗
wp (while(..){...})

{r 7→ fact(n) ∗ c 7→ n}

Proof.
generalize Hr Hc.

induction. while spec.

vcgen.

- vcgen. apply IH.

- eauto.

Qed.

while(*c < n){
*r= *r ∗ (++(*c));

}

Post-condition: r 7→ fact(n) ∗ c 7→ n

15

∃k ≤ n.

Hr: r 7→ fact(k)

Hc: c 7→ k

Hk: k < n

IH: ∀k. B
r 7→ fact(k) ∗ c 7→ k ∗ k ≤ n −∗

wp (while(..){...})
{r 7→ fact(n) ∗ c 7→ n}

Proof.
generalize Hr Hc. induction.

while spec.

vcgen.

- vcgen. apply IH.

- eauto.

Qed.

while(*c < n){
*r= *r ∗ (++(*c));

}

Post-condition: r 7→ fact(n) ∗ c 7→ n

15

∃k ≤ n.

Hr: r 7→ fact(k)

Hc: c 7→ k

Hk: k < n

IH: ∀k.

B

r 7→ fact(k) ∗ c 7→ k ∗ k ≤ n −∗
wp (while(..){...})

{r 7→ fact(n) ∗ c 7→ n}

Proof.
generalize Hr Hc. induction. while spec.

vcgen.

- vcgen. apply IH.

- eauto.

Qed.

Goal [1/2].

if (*c < n) {

*r= *r ∗ (++(*c)) ;

while(*c < n){
*r= *r ∗ (++(*c));

}
}

Post-condition: r 7→ fact(n) ∗ c 7→ n

15

∃k ≤ n.

Hr: r 7→ fact(k)

Hc: c 7→ k

Hk: k < n

IH: ∀k.

B

r 7→ fact(k) ∗ c 7→ k ∗ k ≤ n −∗
wp (while(..){...})

{r 7→ fact(n) ∗ c 7→ n}

Proof.
generalize Hr Hc. induction. while spec.

vcgen.

- vcgen. apply IH.

- eauto.

Qed.

Goal [1/2].

if (*c < n) {

*r= *r ∗ (++(*c)) ;

while(*c < n){
*r= *r ∗ (++(*c));

}
}

Post-condition: r 7→ fact(n) ∗ c 7→ n

16

∃k ≤ n.

Hr: r 7→ fact(k)

Hc: c 7→ k

Hk: k < n

IH: ∀k.

B

r 7→ fact(k) ∗ c 7→ k ∗ k ≤ n −∗
wp (while(..){...})

{r 7→ fact(n) ∗ c 7→ n}

Proof.
generalize Hr Hc. induction. while spec.

vcgen.

- vcgen. apply IH.

- eauto.

Qed.

Goal [1/2].

if (*c < n) {

*r= *r ∗ (++(*c)) ;

while(*c < n){
*r= *r ∗ (++(*c));

}
}

Post-condition: r 7→ fact(n) ∗ c 7→ n

16

∃k ≤ n.

Hr: r 7→ fact(k)

Hc: c 7→ k

Hk: k < n

IH: ∀k.

B

r 7→ fact(k) ∗ c 7→ k ∗ k ≤ n −∗
wp (while(..){...})

{r 7→ fact(n) ∗ c 7→ n}

Proof.
generalize Hr Hc. induction. while spec.

vcgen.

- vcgen. apply IH.

- eauto.

Qed.

Goal [1/2].

if (*c < n) {

*r= *r ∗ (++(*c)) ;

while(*c < n){
*r= *r ∗ (++(*c));

}

}

Post-condition: r 7→ fact(n) ∗ c 7→ n

16

∃k ≤ n.

Hr: r 7→ fact(k)

Hc: c 7→ k

Hk: k < n

IH: ∀k.

B

r 7→ fact(k) ∗ c 7→ k ∗ k ≤ n −∗
wp (while(..){...})

{r 7→ fact(n) ∗ c 7→ n}

Proof.
generalize Hr Hc. induction. while spec.

vcgen.

- vcgen.

apply IH.

- eauto.

Qed.

Goal [1/2].

if (*c < n) {

*r= *r ∗ (++(*c)) ;

while(*c < n){
*r= *r ∗ (++(*c));

}

}

Post-condition: r 7→ fact(n) ∗ c 7→ n

16

∃k ≤ n.

Hr: r 7→ fact(k) · (k + 1)

Hc: c 7→ (k + 1)

Hk: k < n

IH: ∀k.

B

r 7→ fact(k) ∗ c 7→ k ∗ k ≤ n −∗
wp (while(..){...})

{r 7→ fact(n) ∗ c 7→ n}

Proof.
generalize Hr Hc. induction. while spec.

vcgen.

- vcgen.

apply IH.

- eauto.

Qed.

Goal [1/2].

if (*c < n) {

*r= *r ∗ (++(*c)) ;

while(*c < n){
*r= *r ∗ (++(*c));

}

}

Post-condition: r 7→ fact(n) ∗ c 7→ n

16

∃k ≤ n.

Hr: r 7→ fact(k) · (k + 1)

Hc: c 7→ (k + 1)

Hk: k < n

IH: ∀k.

B

r 7→ fact(k) ∗ c 7→ k ∗ k ≤ n −∗
wp (while(..){...})

{r 7→ fact(n) ∗ c 7→ n}

Proof.
generalize Hr Hc. induction. while spec.

vcgen.

- vcgen. apply IH.

- eauto.

Qed.

Goal [1/2].

if (*c < n) {

*r= *r ∗ (++(*c)) ;

while(*c < n){
*r= *r ∗ (++(*c));

}

}

Post-condition: r 7→ fact(n) ∗ c 7→ n

16

∃k ≤ n.

Hr: r 7→ fact(k)

Hc: c 7→ k

Hk: k = n

IH: ∀k.

B

r 7→ fact(k) ∗ c 7→ k ∗ k ≤ n −∗
wp (while(..){...})

{r 7→ fact(n) ∗ c 7→ n}

Proof.
generalize Hr Hc. induction. while spec.

vcgen.

- vcgen. apply IH.

- eauto.

Qed.

Goal [2/2].

()

Post-condition: r 7→ fact(n) ∗ c 7→ n

16

Implementation (1/2)

We implemented the symbolic execution algorithm as a partial function
which we restrict to symbolic heaps:

forward : (sheap× expr)→ (val× sheap× sheap)

satisfying the following specification:

forward(m, e) = (w,mo
1 ,m1)

JmK ` wp e {v. v = w ∗ Jmo
1K} ∗ Jm1K

17

Implementation (1/2)

We implemented the symbolic execution algorithm as a partial function
which we restrict to symbolic heaps:

forward : (sheap× expr)→ (val× sheap× sheap)

Future work:

- lift the restriction for the precondition to handle pure facts

- enable interaction with external decision procedures

17

Implementation (2/2)

The vcgen is implemented as a total function

vcg : (sheap× expr × (sheap→ val→ Prop))→ Prop

satisfying the following specification:

P ′ ` vcg(m, e, λm′ v. Jm′K −∗ Φ v)

P ′ ∗ JmK ` wp e {Φ}

18

Conclusion

Other contributions and related topics not covered in this talk:

- monadic definitional semantics of a subset of C

- multi-layered design of weakest precondition calculus on top of Iris

- proof by reflection as a part of development of automated procedures

The main message for today:

Symbolic execution with frames is a key to enable
semi-automated reasoning about C non-determinism
in an interactive theorem prover.

19

Thank you !

19

	Title
	Problem
	Existing solution
	Goal
	Concurrent separation logic with fractional lockable permissions
	Limitations
	Overview

	Symbolic executor
	Key idea
	Symbolic execution for binop
	Towards automation

	Verification condition generator
	key idea
	Example
	Implementation (1/2)
	Implementation (2/2)
	Conclusion

