
Formal Reasoning 2019
Solutions Test Blocks 1, 2 and 3: Additional Test

(08/01/20)

1. We can translate LTL formulas into predicate logic with equality using (30 points)

the following dictionary:

T domain of time instances
F domain of atomic propositions
t0 the time instance of the world x0
a atomic proposition a
b atomic proposition b
B(i, j) time i is strictly before time j
X(i, j) time j is one step after time i
H(i, f) atomic proposition f is true at time i

For example x1 
 Ga translates to:

∃t1 ∈ T [X(t0, t1) ∧ ∀i ∈ T [B(t1, i) ∨ t1 = i→ H(i, a)]]

Give a translation in this style of:

x1 
 a U b

This is the definition from the course notes:

xi 
 f U g there is a j ≥ i such that xj 
 g and for all
k ∈ {i, i+ 1, . . . , j − 1} we have xk 
 f

Translating this to the formula at hand we get:

x1 
 a U b there is a j ≥ 1 such that xj 
 b and for all
k ∈ {1, 1 + 1, . . . , j − 1} we have xk 
 a

If we follow the structure from the example, we get:

∃t1 ∈ T [ X(t0, t1) ∧
∃j ∈ T [ (B(t1, j) ∨ t1 = j) ∧H(j, b) ∧

∀k ∈ T [(B(t1, k) ∨ t1 = k) ∧B(k, j)→ H(k, a)]
]

]

However, j ≥ 1 is equivalent to j > 0, so we can also try to give a formula
for:

x1 
 a U b there is a j > 0 such that xj 
 b and for all
k ∈ {1, 1 + 1, . . . , j − 1} we have xk 
 a

And because of the fact that B(i, j) indicates i is strictly before j, this
simplifies the formula, because we no longer need t1.

∃j ∈ T [ B(t0, j) ∧H(j, b) ∧
∀k ∈ T [B(t0, k) ∧B(k, j)→ H(k, a)]

]
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2. Consider the context-free grammar G2 : (30 points)

S → A | bS
A→ aA | cS | λ

We can show that ab 6∈ L(G2) by using the invariant:

P (w) :=
(
w does not contain any of: ab, aS, Ab, Sb, AS, SS

)
To show that this is an invariant, you need to check that P (S) holds (that
is easy), but you also need to check that the property is preserved by each
production rule in the grammar. The exercise is to show that this is the
case for the rule:

S → bS

(You do not need to show this for the other four rules.)

So what we have to show is that given any word v ∈ {a, b, S,A}∗ such
that P (v) holds, and any word v′ ∈ {a, b, S,A}∗ such that v′ is produced
from v by the production S → bS, P (v′) also holds.

Now let us assume that v and v′ are as above. Then in particular v should
contain an S. So we know that v = uSw for some u,w ∈ {a, b, S,A}∗.
Then it follows that v′ = ubSw.

Because we know that P (v) holds, it is clear that if P (v′) doesn’t hold, it
must have been caused by the surroundings of the bS in v′. In fact there
are five ways that P (v′) may not hold:

• If u = u′a then v′ = u′abSw and P (v′) doesn’t hold because v′

contains ab. But this cannot happen, because it would imply that
v = u′aSw which contains the forbidden aS, so P (v) wouldn’t hold.

• If u = u′A then v′ = u′AbSw and P (v′) doesn’t hold because v′

contains Ab. But this cannot happen, because it would imply that
v = u′ASw which contains the forbidden AS, so P (v) wouldn’t hold.

• If u = u′S then v′ = u′SbSw and P (v′) doesn’t hold because v′

contains Sb. But this cannot happen, because it would imply that
v = u′SSw which contains the forbidden SS, so P (v) wouldn’t hold.

• If w = bw′ then v′ = ubSbw′ and P (v′) doesn’t hold because v′

contains Sb. But this cannot happen, because it would imply that
v = uSbw which contains the forbidden bS, so P (v) wouldn’t hold.

• If w = Sw′ then v′ = ubSSw′ and P (v′) doesn’t hold because v′

contains SS. But this cannot happen, because it would imply that
v = uSSw which contains the forbidden SS, so P (v) wouldn’t hold.

Hence P (v′) holds as well, so the property P (w) is invariant under the
production S → bS.

3. Consider the following equation:{
n

n− 2

}
=

(
n

3

)
+

1

2

(
n

2

)(
n− 2

2

)
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(a) Show that this equation holds for n = 4 by computing the Stirling (10 points)

number and the binomial coefficients explicitly.{
4

4− 2

}
= 7

(
4

3

)
= 4

(
4

2

)
= 6

(
4− 2

2

)
= 1

And 7 = 4 + 1
2 · 6 · 1.

(b) Give a combinatorial argument that shows that this equation holds (20 points)

for all n ≥ 4.

Note that by definition
{

n
n−2

}
is the number of ways we can distribute

n distinct objects over n − 2 indistinguishable bags, where the bags
should be non-empty.

Because the bags are supposed to be non-empty, there isn’t much
choice. Any distribution can be created by first putting n−2 objects
into a bag on their own. Then we have two objects left. There are
two possibilities:

• Either these last two objects are placed together in one of the
n− 2 bags.

• Or these last two objects are placed in two different bags. Note
that this works because n ≥ 4 and hence n− 2 ≥ 2.

A distribution of the first kind can be created in the following way:

• First we choose three objects and put them together in a single
bag. This can be done in

(
n
3

)
ways.

• Then we put each of the remaining n − 3 objects in of the re-
maining n− 3 bags on their own. This can be done in only one
way, since the bags are indistinguishable.

Hence there are
(
n
3

)
distributions of the first type.

A distribution of the second kind can be created in the following way:

• First we choose two objects and put them together in a single
bag. This can be done in

(
n
2

)
ways.

• Then we choose two objects out of the remaining n − 2 objects
and put them together in a single bag (obviously in one of the
remaining n− 1 bags). This can be done in

(
n−2
2

)
ways.

• Then we put each of the remaining n − 4 objects in of the re-
maining n− 4 bags on their own. This can be done in only one
way, since the bags are indistinguishable.

So this would give
(
n
2

)
·
(
n−2
2

)
distributions, however, we have counted

everything double. Because the bags are indistinguishable it doesn’t
matter which two objects we put in the first bag and which two
in the second bag. So we have to divide by two. Hence there are
1
2 ·

(
n
2

)
·
(
n−2
2

)
distributions of the second type.

Hence in total there are(
n

3

)
+

1

2
·
(
n

2

)
·
(
n− 2

2

)
ways to distribute n distinct objects over n−2 indistinguishable non-
empty bags.
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