Formal Reasoning 2019

Test Block 3: Discrete Mathematics and Modal Logic (18/12/19)

Before you read on, write your name, student number and study on the answer sheet!

We will only look at scratch paper if it has your name on it and you refer to it on the answer sheet. If not, we prefer that you do not hand in your scratch paper.
The mark for this test is the number of points divided by ten. The first ten points are free. Good luck!

1. The hypercube graph Q_{n} has as its vertices the elements of $\{a, b\}^{n}$ (the words of length n over the alphabet $\{a, b\})$. Two vertices are connected by an edge when they differ in exactly one position. For example in Q_{4} there is an edge between $a a a b$ and $a b a b$, but not between $a a a b$ and $a b b b$.
Draw Q_{0}, Q_{1}, Q_{2} and Q_{3}.
2. In Pascal's triangle, we have:

$$
\binom{5}{3}=\binom{4}{2}+\binom{4}{3}
$$

(a) Give the values of these three binomial coefficients, and show that the equation holds.
(b) Give the list of selections from the set $\{1,2,3,4,5\}$ that corresponds to the first binomial coefficient, and divide that list in two sublists that correspond to the two other binomial coefficients. Explain how this division shows why this equation holds.
3. We use the dictionary:

$$
\begin{array}{ll}
R & \text { it rains } \\
W & \text { I am wet }
\end{array}
$$

(a) Using a temporal interpretation for the modalities (i.e., interpreting ' \square ' as 'always'), explain the difference in meaning between the two modal formulas:

$$
\begin{gathered}
\square(R \rightarrow W) \\
R \rightarrow \square W
\end{gathered}
$$

(b) Which of these two formulas most accurately gives the meaning of the sentence:

When it rains, I always get wet.
Explain your answer.
4. We define a sequence (a_{n}) using the recursion equations:

$$
\begin{aligned}
a_{0} & =0 \\
a_{n+1} & =a_{n}+9 \cdot 10^{n} \quad \text { for } n \geq 0
\end{aligned}
$$

(a) Show how to compute a_{3} from this definition.
(b) Prove using induction that $a_{n}=10^{n}-1$ for all $n \geq 0$.

