
Formal Reasoning 2020
Solutions Test Block 2: Languages and Automata

(26/10/20)

Multiple choice questions

1. Which of the following four languages is different from the other three?

(a) ∅(a) is correct

(b) ∅∗

(c) {λ}
(d) {λ}∗

Answer (a) is correct. The language ∅ is empty, which means that it con-
tains no words. All other languages are equal to {λ}. If you concatenate
zero words from the empty language, you get the empty word. If you
concatenate zero or more times the empty word, it will still be the empty
word.

1. Which of the following four languages is different from the other three?

(a) ({a, b})∗

(b) ({b, a, a})∗

(c) ({a}∗ ∪ {b}∗)(c) is correct

(d) ({a} ∪ {b})∗

Answer (c) is correct. The languages ({a, b})∗, ({b, a, a})∗, and ({a}∪{b})∗
basically all state: choose either a or b and do that as often as you want.
This gives all words over the alphabet {a, b}. The language ({a}∗ ∪{b}∗),
however, states: take any amount of a’s or any amount of b’s. In particular
this last language doesn’t contain words like ab that contain a’s and b’s.

2. Is the intersection of two regular languages always regular?

(a) Yes, because if all words in both languages are regular, then the
words in the intersection are also certainly regular.

(b) Yes, because the complement of a regular language is always regular,

and L ∩ L′ = L ∪ L′.(b) is correct

(c) No, because the intersection symbol ‘∩’ is not allowed in a regular
expression.

(d) No, because a sublanguage of a regular language does not need to be
regular.

Answer (b) is correct. De Morgan’s law tells us that L∩L′ = L ∪ L′. But
regular languages are closed under taking the complement. So if L and
L′ are regular, then L and L′ are also regular. And regular languages are
closed under taking the union, so L ∪ L′ is also regular. Finally, we take

another complement and we get that L ∪ L′ is indeed regular.

The first answer makes no sense because ‘being regular’ is not a property
of words, but of languages.

The third and the fourth answer make no sense because the answer is ‘yes’.

1

2. Is the complement of a regular language always regular?

(a) Yes, because the regular languages are exactly the languages that can
be recognized with a DFA, and it is easy to construct a DFA for the
complement.(a) is correct

(b) Yes, because the complement of the complement is the language itself,
so no information is lost by complementation.

(c) No, because the complement symbol ‘L’ is not allowed in a regular
expression.

(d) No, because if the words in a language are regular, all words that are
not regular will be in the complement.

Answer (a) is correct. It is true that the regular languages correspond
to the languages generated by DFAs. By swapping all finite states and
non-finite states in a DFA, we can compute the complement of a language
with a new DFA, which by definition corresponds to a regular language
again.

The second answer makes no sense because it assumes that if you apply an
operation twice and you get back the original property, it should also be
the case that the property holds after applying the operation only once,
but there is no explanation why that should be the case. In general it
doesn’t hold for all operations.

The third and the fourth answer make no sense because the answer is ‘yes’.

3. Consider the context-free grammar G3:

S → aS | Aa
A→ bS | Aa | λ

We want to show that ba 6∈ L(G3) and for this we consider the following
property as an invariant:

P (w) := w contains at least one S or one a

Does that work?

(a) Yes, because after the first production step the words in a production
will contain an a, which will not go away anymore in the rest of the
production.

(b) Yes, because the property holds for S, and in each production step
for S the symbol a is introduced.

(c) No, because the invariant is useless for this.(c) is correct

(d) No, because we have the rule A→ λ, and this rule does not introduce
either an S or an a.

Answer (c) is correct. Note that property P (w) is indeed an invariant.

• It clearly holds for S, because S contains at least one S.

• Now if we assume that v is a word such that P (v) holds, this can be
because v contains at least one S or at least one a.

2

– In the first case we again have to check some options: either
there is a single S which is being replaced in the step, or there
are more S’s of which one is replaced, or a non-terminal A is
replaced.

∗ In the first case, v′ has at least one a because both possible
replacements of the S contain an a.

∗ In the second case, only one S is replaced, so there will be
at least one left in v′.

∗ In the third case, the existing S will still be in v′. So in all
cases we see that P (v′) also holds.

– In the second case, if v′ is such that v → v′, then P (v′) also
holds, because a’s are never removed.

However, P (ba) also holds, so this invariant cannot be used to show that
ba 6∈ L(G3).

The first and the second answer make no sense because the answer is ‘no’.

The fourth answer makes no sense because it is not related to the problem
at hand at all.

3. Consider the context-free grammar G3:

S → aS | Aa
A→ bS | Aa | λ

We want to show that ba 6∈ L(G3) and for this consider the following
property as an invariant:

P (w) := if w contains the symbol b then it contains at least two a’s

Does that work?

(a) Yes, because to get the symbol b in a word, you need to use the
rule A→ bS, and any production that involves that rule needs to go
through the rule S → Aa twice.

(b) Yes, because this property holds for all words in the language of G3.

(c) No, because the invariant is useless for this.

(d) No, because we have the rule A→ bS.(d) is correct

Answer (d) is correct. Note that property P (w) is not an invariant. Let
v = A and v′ = bS. Then clearly P (v) holds because v contains no b’s.
And because of the rule A→ bS it also holds that v → v′. But P (v′) does
not hold: it contains a b but no a’s.

The first and the second answer make no sense because the answer is ‘no’.

The third answer makes no sense because P (ba) does not hold, which
implies that if P (w) was an invariant, it would have been a useful one.

4. Is there for all context-free grammars a right linear grammar that produces
the same language?

(a) Yes, you can find such a grammar by converting to an automaton,
and then converting back to a grammar.

3

(b) Yes, because all right linear grammars are context-free grammars.

(c) No, because not all context-free languages are regular.(c) is correct

(d) No, because some rules can violate the condition of the context-free
grammars being right linear.

Answer (c) is correct. We know that the language {anbn | n ∈ N} is not
regular. But it can be created with this context free grammar:

S → aSb | λ

So this is a language for which we know for sure that a context-free gram-
mar exists, but not a right linear one.

The first and the second answer make no sense because the answer is ‘no’.

The fourth answer makes no sense because if a grammar is not right lin-
ear, the language still can have a right linear grammar as well. Take for
example the language with grammar

S → Sa | λ

The first rule is not right linear, but the language can also be defined with
the right linear grammar:

S → aS | λ

Therefore, the fact that some rules in a grammar are not right linear
does not imply that the produced language does not have a right linear
grammar as well.

4. Is there for all non-deterministic finite automata a deterministic finite
automaton that recognizes the same language?

(a) Yes, you can construct such an automaton using the power set con-
struction.(a) is correct

(b) Yes, because you are not required to have non-determinism in a non-
deterministic automaton.

(c) No, because in a non-deterministic automaton λ transitions are al-
lowed.

(d) No, because non-deterministic automata are more efficient than de-
terministic automata.

Answer (a) is correct. This is basically Theorem 4.12 from the course
notes, using the algorithm from Section 4.4.

The second answer makes no sense because this only explains that some
NFAs are in fact already DFAs, but it doesn’t explain why the other NFAs
have an equivalent DFA.

The third and the fourth answer make no sense because the answer is ‘yes’.

5. Are there languages for which every deterministic finite automaton has
a sink (a non-final state for which each transition will loop back to that
state)?

4

(a) Yes, when there is a word w for which any extension ww′ will not be
in the language.

(b) Yes, because each state needs to have a transition for each symbol.

(c) No, because you can always split a sink in multiple states.(c) is correct

(d) No, because you can always use a non-deterministic automaton.

Answer (c) is correct. The idea of a sink is that you create a ‘black hole’
in a DFA: once you get in there, you can never get out anymore. This
can be done using a single state with the ‘sink property’. However, it can
also be done using two non-final states q and q′, where for each symbol s
in the alphabet we have δ(q, s) = q′ and δ(q′, s) = q. This has the same
effect, but the ‘looping’ is not done directly to a single state, but indirectly
between two states.

The first and the second answer make no sense because the answer is ‘no’.

The fourth answer makes no sense because the question was about deter-
ministic automata, and what is possible in a non-deterministic automaton
is irrelevant for this.

5. Are there languages for which every non-deterministic finite automaton
does not have a sink (a non-final state for which each transition will loop
back to that state)?

(a) Yes, in the case that each word w has an extension ww′ that is in the
language, there cannot be a sink.

(b) Yes, in non-deterministic automata there never are sinks.

(c) No, one can always add a sink to an automaton without changing
the language that is accepted.(c) is correct

(d) No, there are languages for which each non-deterministic finite au-
tomaton has a sink.

Answer (c) is correct. One can indeed always add a sink without changing
the accepted language, because it will not lead to more accepted words.

The first and the second answer make no sense because the answer is ‘no’.

The fourth answer makes no sense because you can always remove any
sink without changing the accepted language.

Open questions

6. Give a regular expression for the language:

L6 := {w ∈ {a, b}∗ | w does not contain aab}

Take for instance:
(b ∪ ab)∗a∗

As long as we have blocks of only b’s or ab’s everything is fine. But these
blocks leave out the fact that words can end on any number of a’s.

5

6. Give a regular expression for the language:

L6 := {w ∈ {a, b}∗ | w does not contain abb}

Take for instance:
b∗((a ∪ ba)∗ ∪ (a ∪ ab)∗)

Words may always start with any number of b’s. After that they may
stop. Or continue with blocks that have a’s and b’s, but in such a way
that there are never two b’s after each other, and the blocks end with an
a. But we can also continue with blocks that have a’s and b’s, but in such
a way that there are never two b’s after each other, and the blocks end
with a b.

This is equivalent to the simpler form:

b∗(a ∪ ab)∗

7. Is the following language context-free?

L7 := {anbncm | n,m ≥ 0}

If so, give a context-free grammar.

It is context-free because it can be generated with this grammar:

S → Sc | A
A→ aAb | λ

7. Is the following language context-free?

L7 := {anbmcm | n,m ≥ 0}

If so, give a context-free grammar.

It is context-free because it can be generated with this grammar:

S → aS | A
A→ bAc | λ

8. Give a deterministic finite automaton with the least number of states for
the language:

L8 := {w ∈ {a, b}∗ | the number of a’s in w is even iff the number of b’s is even}

(The abbreviation ‘iff’ stands for ‘if and only if’.)

You may think that this is the proper solution:

// q0
a **

b

q1
a
jj

b

q2

a **

b

JJ

q3
a
jj

b

JJ

6

This automaton generates the correct language. Words w for which it
holds that the number of a’s in w is even iff the number of b’s in w is even,
must have either an even number of a’s and an even number of b’s, or an
odd number of a’s and an odd number of b’s. In the automaton the four
states represent whether the number of a’s and b’s are even or odd.

• q0 represents the situation that both numbers are even, which is
allowed, so it is a final state.

• q1 represents the situation that the number of a’s is odd and the
number of b’s is even, which is not allowed, so it is not a final state.

• q2 represents the situation that the number of a’s is even and the
number of b’s is odd, which is not allowed, so it is not a final state.

• q3 represents the situation that both numbers are odd, which is al-
lowed, so it is a final state.

However, the automaton is not minimal. If you look at the words in this
language you can see that the characterizing feature of this language is
the fact that all words have an even length. And with that in mind it is
easy to see that there is an automaton with fewer states that gives the
same language:

// q0
a **

b

��
q1

a
jj

b

[[

8. Give a deterministic finite automaton with the least number of states for
the language:

L8 := {w ∈ {a, b}∗ | the number of a’s in w is odd iff the number of b’s is odd}

(The abbreviation ‘iff’ stands for ‘if and only if’.)

You may think that this is the proper solution:

// q0
a **

b

q1
a
jj

b

q2

a **

b

JJ

q3
a
jj

b

JJ

This automaton generates the correct language. Words w for which it
holds that the number of a’s in w is odd iff the number of b’s in w is odd,
must have either an odd number of a’s and an odd number of b’s, or an
even number of a’s and an even number of b’s. In the automaton the four
states represent whether the number of a’s and b’s are even or odd.

• q0 represents the situation that both numbers are even, which is
allowed, so it is a final state.

• q1 represents the situation that the number of a’s is odd and the
number of b’s is even, which is not allowed, so it is not a final state.

7

• q2 represents the situation that the number of a’s is even and the
number of b’s is odd, which is not allowed, so it is not a final state.

• q3 represents the situation that both numbers are odd, which is al-
lowed, so it is a final state.

However, the automaton is not minimal. If you look at the words in this
language you can see that the characterizing feature of this language is
the fact that all words have an even length. And with that in mind it is
easy to see that there is an automaton with fewer states that gives the
same language:

// q0
a **

b

��
q1

a
jj

b

[[

8

