
Formal Reasoning 2020
Solutions Test Block 3: Discrete Mathematics and Modal

Logic
(9/12/20)

Multiple choice questions

1. A non-empty tree with n vertices has always exactly n− 1 edges. A forest
is a graph that has no cycles. Therefore a forest is what you would expect:
a graph in which each component is a tree.

Which of the following formulas is the generalization of the edge count
formula to forests?

(a) A forest with n vertices and c components has n− c edges.(a) is correct

(b) A forest with n vertices and c components has (n− 1) + c edges.

(c) A forest with n vertices and c components has n + c− 2 edges.

(d) A forest with n vertices has n− 1 edges; the number of components
does not matter.

Answer (a) is correct. Note that a forest is a graph where each component
is a tree. So if a forest has c components, we know that for each component
there exists a natural number ni equal to its number of vertices. So
n = n1 + n2 + · · ·+ nc and component i has by the given formula ni − 1
edges. So the total number of edges in the graph is

c∑
i=1

(ni − 1) =

c∑
i=1

ni −
c∑

i=1

1 =

c∑
i=1

ni − c = n− c

It is clear that none of the other options can be correct at the same time.

1. Which of the following statements correctly characterizes the number of
edges in a non-empty connected graph, in the sense that the bounds hold
and are optimal?

(a) A non-empty connected graph with n vertices has at least n−1 edges
and at most 1

2n(n− 1) edges.(a) is correct

(b) A non-empty connected graph with n vertices has at least n edges
and at most 1

2n(n− 1) edges.

(c) A non-empty connected graph with n vertices has at least n−1 edges
and at most 1

2n(n + 1) edges.

(d) A non-empty connected graph with n vertices has at least n edges
and at most 1

2n(n + 1) edges.

Answer (a) is correct. The upperbound is needed when we have Kn and in
exercise 5.C we have shown that this bound is 1

2n(n−1), because for each
of the n vertices we have n− 1 edges to all n− 1 other vertices, but this
method counts every edge twice, so we multiply with 1

2 . The lowerbound
should hence be n or n − 1. But it cannot be n, because the connected
graph with one vertex has zero edges. So it must be n− 1.

It is clear that none of the other options can be correct at the same time.
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2. Two graphs G1 and G2 are isomorphic and G1 is planar. Is G2 then also
always planar?

(a) Yes, it does not matter for planarity what the labels of the vertices
are.(a) is correct

(b) Yes, because G1 and G2 have the same chromatic number.

(c) No, if G1 is drawn without crossing edges, then you don’t know
whether G2 has crossing edges or not.

(d) No, it depends on the graphs G1 and G2 whether this is the case.

Answer (a) is correct. Being planar depends on the structure of the graph.
And if G1 and G2 are isomorphic, it means that the structure is exactly
the same, but the labels of the vertices may be different.

The second answer makes no sense because the chromatic number has no
direct relation with being isomorphic. If two graphs are isomorphic, then
they have the same chromatic number, but it doesn’t hold in the other
direction. Graphs may have the same chromatic number, but don’t have
to be isomorphic.

The third and the fourth answer make no sense because the answer is ‘yes’.

2. How many isomorphisms are there from K2,3 to itself?

(a) Only one.

(b) Six.

(c) Twelve.(c) is correct

(d) None of the above.

Answer (c) is correct. The graph K2,3 is a complete bipartite graph with,
say, two ‘red’ vertices and three ‘blue’ vertices. So the red vertices have
degree three and the blue vertices have degree two. If an isomorphism
would map a red vertex onto a blue vertex its degree would change, which
is not allowed. So an isomorphism can only permute the two red vertices
between themselves and the three blue vertices between themselves. For
the first permutation there are 2! possibilities and for the second permu-
tation 3!. So in total there are 2! · 3! = 2 · 6 = 12 possibilities for an
isomorphism from K2,3 to itself.

It is clear that none of the other options can be correct at the same time.

3. We want to give a recursive definition of n! = 1 ·2 · . . . ·n, using equations:

0! = . . .

(n + 1)! = n! · (n + 1) for n ≥ 0

For which value for 0! will this recursive definition work?

(a) 0! = 0

(b) 0! = 1(b) is correct

(c) It does not matter what value for 0! one takes, the values of n! for
n ≥ 0 will not change because of that.
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(d) This is not possible, because if one uses the recursive equation back-
wards to calculate 0! from 1!, one is dividing by zero.

Answer (b) is correct. From the definition n! = 1 · 2 · . . . ·n, it follows that
1! = 1. So we get

1! = (0 + 1)! = 0! · (0 + 1) = 0! · 1 = 1

So it must be that 0! = 1.

The first answer makes no sense because this would imply that

1! = (0 + 1)! = 0! · (0 + 1) = 0! · 1 = 0 · 1 = 0

whereas we know it should be 1.

The third answer makes no sense because the answer is irrelevant with
respect to the question.

The fourth answer makes no sense because there is no division by zero,
but a division by one.

3. We want to give a recursive definition of an, using equations:

a0 = . . .

an+1 = an · a for n ≥ 0

For which value for a0 will this recursive definition work?

(a) a0 = 0

(b) a0 = 1(b) is correct

(c) It does not matter what value for a0 one takes, the values of an for
n ≥ 0 will not change because of that.

(d) This is not possible, because a0 is the multiplication of zero a’s, and
you cannot multiply anything when there are no a’s to be multiplied.

Answer (b) is correct. We know that a1 = a. So we get

a1 = a0+1 = a0 · a = a

So it must be that a0 = 1.

The first answer makes no sense because this would imply that

a1 = a0+1 = a0 · a = 0 · a = 0

whereas we know it should be a.

The third answer makes no sense because the answer is irrelevant with
respect to the question.

The fourth answer makes no sense because it is a mathematical definition
that the product of zero terms is equal to 1, just like the sum of zero terms
is equal to 0.
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4. The number of ways that one can divide 10 distinguishable objects into 3
indistinguishable non-empty piles, is:{

10

3

}
= 9330

In how many different ways can one do this if the piles are also distin-
guishable?

(a) 103 −
(
3
2

)
102 −

(
3
1

)
101 = 670

(b) 310 −
(
3
2

)
210 −

(
3
1

)
110 = 55974

(c) 3 · 9330 = 27990

(d) 3! · 9330 = 55980(d) is correct

Answer (d) is correct. An algorithm to create such a distribution is by first
dividing the objects over three indistinguishable non-empty piles, which
can be done in 9330 ways. After that, we can put three different labels on
the three piles, which can be done in 3! = 6 ways. So in total there are
6 · 9330 ways to divide the objects over the piles.

It is clear that none of the other options can be correct at the same time.

4. The number of ways that one can divide 10 distinguishable objects in 3
indistinguishable non-empty piles, is:{

10

3

}
= 9330

In how many different ways can one do this if the objects are also indis-
tinguishable?

(a) 8(a) is correct

(b)
(
10
3

)
= 120

(c) 9330/3 = 3110

(d) 9330/10 = 933

Answer (a) is correct. If both the objects and the piles are indistinguish-
able, a division is characterized solely by the number of objects in a pile.
We can easily list these different possibilities systematically:

8− 1− 1 7− 2− 1 6− 3− 1 5− 4− 1 4− 4− 2
6− 2− 2 5− 3− 2 4− 3− 3

Recall that the piles should not be empty. So we can do this in eight ways.

It is clear that none of the other options can be correct at the same time.

5. We want to translate the following English sentence to a modal formula:

Work from home, unless it is absolutely necessary that you go
to work.

Which of the following logics is the most suitable for this?

(a) Doxastic logic.
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(b) Deontic logic.(b) is correct

(c) Epistemic logic.

(d) Temporal logic.

Answer (b) is correct. The sentence can be interpreted as ‘You must work
from home, unless you really must go to work’. So therefore deontic logic.

The first answer makes no sense because doxastic logic is about belief,
which is not appropriate in this situation.

The third answer makes no sense because epistemic logic is about knowl-
edge, which is not appropriate in this situation.

The fourth answer makes no sense because temporal logic is about time,
which is not appropriate in this situation.

5. We want to translate the following English sentence to a modal formula:

An organization or business can be closed down for 14 days, if
contract tracing by the Municipal Health Service (GGD) shows
that an infection occurred there.

Which of the following logics is the most suitable for this?

If there are different modalities in the sentence, you should consider the
outermost one. For instance ‘You must never cheat on an exam’ is deontic
and not temporal.

(a) Alethic logic (the logic of necessity and possibility).(a) is correct

(b) Doxastic logic.

(c) Epistemic logic.

(d) Temporal logic.

Answer (a) is correct. The outer modality is in the ‘can be closed down’,
which indicates a possibility. So alethic logic is the most suitable.

The second answer makes no sense because doxastic logic is about belief,
which is not appropriate in this situation.

The third answer makes no sense because epistemic logic is about knowl-
edge, which is not appropriate in this situation.

The fourth answer makes no sense because temporal logic is about time,
which is not appropriate in this situation, because that is part of the inner
modality.

6. Which of the following LTL formulas does not hold in all LTL models?

(a) Ga→ GGa
(b) Ga→ GFa
(c) Fa→ FGa(c) is correct

(d) Fa→ FFa
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Answer (c) is correct. Note that Fa → FGa implies that if there will be
a moment in the future (including now) that a holds, then there will also
be a moment in the future (including now) that a always holds from that
moment on. In the Kripke LTL model where a only holds now, but never
again, this is not true.

The first answer makes no sense because it is true that if a always holds
from now on, then it will also always hold from now on.

The second answer makes no sense because it is true that if a always
holds from now on, then it will also always be the case that in the future
(including the current) moment a will hold.

The fourth answer makes no sense because it is true that in the future
(including now) a will hold, it is also true that in the future (including
now) a will hold in the future (including now), because of the ‘including
now’ allows to strip one of the F ’s.

6. Which of the following LTL formulas does not hold in all LTL models?

(a) Xa→ XXa(a) is correct

(b) Xa→ XFa
(c) Xa→ FXa
(d) Xa→ FFa

Answer (a) is correct. The formula Xa → XXa implies that if a holds
in the next moment, then it will also hold in the next moment after that
moment. But if we take a Kripke LTL model where a is only true in the
second moment, then Xa does hold but XXa does not.

The second answer makes no sense because it is true that if a holds in
the next moment, then Fa will also hold in the next moment, because F
includes the current moment.

The third answer makes no sense because it is true that if a holds in the
next moment, then in the future (including now) Xa also holds, because
F includes the current moment.

The fourth answer makes no sense because it is true that if a holds in the
next moment, then FFa also holds because if Xa holds, we know that in
the future a holds, and then because F includes the current moment, we
may add a second F and it will still be true.

Open questions

7. Someone defines

a0 = 1

an+1 = 2an + n for n ≥ 0

and then proves using induction that

an−1 + n = 2n for n ≥ 1

The exercise is to write down the induction hypothesis for this proof, where
the proof follows the induction scheme from our course.
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After that, also explain why it is justified to assume this induction hy-
pothesis in the proof by induction.

(Note that you do not need to write down the proof of the induction
step, let alone the full induction proof. Only step six from the scheme is
requested, with an explanation why this step is the way it is.)

Step 6 is: ‘Assume that we already know that P (k) holds, i.e. we assume
that ak−1 + k = 2k.’

This means that the induction hypothesis is the statement ak−1 + k = 2k.

You may assume the induction hypothesis when proving the induction
step for k, because it follows from the base case together with all the
earlier instances of the induction step proof, i.e., the induction steps for
1, . . . , k − 1.

The base case gives P (1), the induction step for 1 uses that to prove P (2),
the induction step for 2 uses that to prove P (3), and so on, until the
induction step for k − 1 uses that to prove P (k). Therefore, at k we may
use that we already know that P (k) holds.

7. Someone wants to prove by induction:(
n

2

)
=

1

2
n(n− 1) for n ≥ 2

For this he or she wants to have the proof follow the recursive definition
of Pascal’s triangle.

The exercise is to write down the base case part of this induction proof.

After that, also give a sufficiently large part of Pascal’s triangle, and indi-
cate which number in Pascal’s triangle is referenced from this base case.

(Note that you do not need to write down the full induction proof. Only
steps three and four from the scheme are requested, with an explanation
of the connection to Pascal’s triangle.)

In the base case we have to prove that
(
2
2

)
= 1

2 · 2 · (2 − 1). This holds
because (

2

2

)
= 1 = (2− 1) = 1 · (2− 1) =

1

2
· 2 · (2− 1)

The start of Pascal’s triangle is:

1
1 1

1 2 1

And the
(
2
2

)
is marked.

8. Give a Kripke model that shows that:

6� �♦a→ ♦�a

Explain your answer.

A model with a single world x1 with no successors will do. The valuation
does not matter.

M1 := x1
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If we want to prove that 6� �♦a→ ♦�a holds, we have to show that there
is at least one model M for which M 6� �♦a → ♦�a. In order to prove
this, we have to show that there is at least one world x in the model M
for which x 6 �♦a→ ♦�a. In this case we take M1 for M and x1 for x.

Now to prove that x1 6 �♦a → ♦�a, we show that x1  �♦a and
x1 6 ♦�a.

The first claim holds by default, because any formula of the form �f holds
in x1, due to the fact that x1 has no successors. The second claim also
holds by default, because any formula of the form ♦f can only hold if
there is at least one successor where f holds, but there is no successor at
all in x1, so certainly no successor where �a holds.

So x1 6 �♦a→ ♦�a, so M1 6� �♦a→ ♦�a, and hence 6� �♦a→ ♦�a.

8. Give a Kripke model that shows that:

6� ♦�a→ �♦a

Explain your answer.

A model with two worlds x1 and x2 where x2 is the only successor of x1

and x2 has no successors will do. The valuation does not matter.

M1 := x1
// x2

If we want to prove that 6� ♦�a→ �♦a holds, we have to show that there
is at least one model M for which M 6� ♦�a → �♦a. In order to prove
this, we have to show that there is at least one world x in the model M
for which x 6 ♦�a→ �♦a. In this case we take M1 for M and x1 for x.

Now to prove that x1 6 ♦�a → �♦a, we show that x1  ♦�a and
x1 6 �♦a.

In order for the first claim to hold, there has to be a successor of x1 where
�a holds. World x2 is such a successor, because x2  �a by definition,
because any formula of the form �f holds in x2, due to the fact that x2

has no successors. In order for the second claim to hold, there has to be a
successor of x1 where ♦a does not hold. Since x2 is the only successor of
x1, it has to be x2. So we have to prove that x2 6 ♦a. However, this holds
by default, because any formula of the form ♦f can only hold if there is
at least one successor where f holds, but there is no successor at all in x2,
so certainly no successor for which a holds.

So x1 6 ♦�a→ �♦a, so M1 6� ♦�a→ �♦a, and hence 6� ♦�a→ �♦a.
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