
Formal Reasoning 2020
Solutions Test Blocks 1, 2 and 3: Additional Test

(16/12/20)

There are six multiple choice questions and two open questions. The open
questions will be at the end of the test. Each multiple choice question is worth
10 points, and the open questions are worth 15 points. The first ten points are
free. Good luck!

Multiple choice questions

1. The exclusive or operation in propositional logic, with symbol⊕, is defined
by the following truth table:

a b a⊕ b
0 0 0
0 1 1
1 0 1
1 1 0

The formula a⊕ b should be read as ‘a, or b, but not both’.

Which of the following formulas is not logically equivalent to a⊕ b?

(a) a ∧ (¬b) ∨ (¬a) ∧ b
(b) a ∨ b ∧ ¬(a ∧ b)(b) is correct

(c) ¬a↔ b

(d) ¬(a↔ b)

Answer (b) is correct. The short answer is that if v(a) = 1 and v(b) = 1,
then v(a ∨ b ∧ ¬(a ∧ b)) = 1, whereas v(a⊕ b) = 0. Note that the official
notation of the formula is (a∨ (b∧¬(a∧ b))) and not ((a∨ b)∧¬(a∧ b)).
The long answer provides all truth tables and it is clear that all other
formulas are indeed logically equivalent, because the tables are the same.

a b a⊕ b ¬a ¬b a ∧ (¬b) (¬a) ∧ b a ∧ (¬b) ∨ (¬a) ∧ b
0 0 0 1 1 0 0 0
0 1 1 1 0 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 0 0 0 0

a b a⊕ b a ∧ b ¬(a ∧ b) b ∧ ¬(a ∧ b) a ∨ b ∧ ¬(a ∧ b)
0 0 0 0 1 0 0
0 1 1 0 1 1 1
1 0 1 0 1 0 1
1 1 0 1 0 0 1

a b a⊕ b ¬a ¬a↔ b
0 0 0 1 0
0 1 1 1 1
1 0 1 0 1
1 1 0 0 0
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a b a⊕ b a↔ b ¬(a↔ b)
0 0 0 1 0
0 1 1 0 1
1 0 1 0 1
1 1 0 1 0

1. The Sheffer stroke operation in propositional logic, with symbol |, is de-
fined by the following truth table:

a b a | b
0 0 1
0 1 1
1 0 1
1 1 0

This is also known as the nand operation, as it corresponds to the nand -
gate which is one of the basic gates in logical circuits in a computer.

Which of the following formulas is not logically equivalent to a | b?

(a) ¬(a ∧ b)
(b) ¬a ∧ ¬b(b) is correct

(c) a→ ¬b
(d) b→ ¬a

Answer (b) is correct. The short answer is that if v(a) = 0 and v(b) = 1,
then v(¬a ∧ ¬b) = 0, whereas v(a | b) = 1.

The long answer provides all truth tables and it is clear that all other
formulas are indeed logically equivalent, because the tables are the same.

a b a | b a ∧ b ¬(a ∧ b)
0 0 1 0 1
0 1 1 0 1
1 0 1 0 1
1 1 0 1 0

a b a | b ¬a ¬b ¬a ∧ ¬b
0 0 1 1 1 1
0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 1 0 0

a b a | b ¬b a→ ¬b
0 0 1 1 1
0 1 1 0 1
1 0 1 1 1
1 1 0 0 0

a b a | b ¬a b→ ¬a
0 0 1 1 1
0 1 1 1 1
1 0 1 0 1
1 1 0 0 0
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2. Consider the model M := (N, 0,+) and the interpretation I defined by:

N N
o 0
A(x, y, z) x+ y = z

Which of the following statements does not hold?

(a) (M, I) � ∀x ∈ N ∃y ∈ N A(o, x, y)

(b) (M, I) � ∀x ∈ N ∃y ∈ N A(x, o, y)

(c) (M, I) � ∀x ∈ N ∃y ∈ N A(y, o, x)

(d) (M, I) � ∀x ∈ N ∃y ∈ N A(x, y, o)(d) is correct

Answer (d) is correct. The statement (M, I) � ∀x ∈ N ∃y ∈ N A(x, y, o)
means that for each natural number x there is a natural number in y such
that x + y = 0. However, this cannot hold. If x = 37 then y should be
−37 in order to get x + y = 0, but −37 6∈ N. So it doesn’t hold for all
x ∈ N.

The statement (M, I) � ∀x ∈ N ∃y ∈ N A(o, x, y) means that for each
natural number x there exists a natural number y such that 0 + x = y.
This holds because we can take y = x.

The statement (M, I) � ∀x ∈ N ∃y ∈ N A(x, o, y) means that for each
natural number x there exists a natural number y such that x + 0 = y.
This holds because we can take y = x.

The statement (M, I) � ∀x ∈ N ∃y ∈ N A(y, o, x) means that for each
natural number x there exists a natural number y such that y + 0 = x.
This holds because we can take y = x.

2. Consider the model M := (N,−) and the interpretation I defined by:

N N
S(x, y, z) x− y = z

Which of the following statements does not hold?

(a) (M, I) � ∀x ∈ N ∃y ∈ N S(x, y, y)(a) is correct

(b) (M, I) � ∀x ∈ N ∃y ∈ N S(x, x, y)

(c) (M, I) � ∀x ∈ N ∃y ∈ N S(x, y, x)

(d) (M, I) � ∀x ∈ N ∃y ∈ N S(y, x, x)

Answer (a) is correct. The statement (M, I) � ∀x ∈ N ∃y ∈ N S(x, y, y)
means that for each natural number x there is a natural number y such
that x− y = y. However, this doesn’t hold if x = 1. Because x− y needs
to be a natural number, y can only be 0 or 1. If y = 0 we get 1 − 0 = 0
and if y = 1 we get 1 − 1 = 1. Obviously, in both cases the statement is
not true. So the statement doesn’t hold.

The statement (M, I) � ∀x ∈ N ∃y ∈ N S(x, x, y) means that for each
natural number x there exists a natural number y such that x − x = y.
This holds because we can always take y = 0.
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The statement (M, I) � ∀x ∈ N ∃y ∈ N S(x, y, x) means that for each
natural number x there exists a natural number y such that x − y = x.
This holds because we can always take y = 0.

The statement (M, I) � ∀x ∈ N ∃y ∈ N S(y, x, x) means that for each
natural number x there exists a natural number y such that y − x = x.
This holds because we can always take y = 2x.

3. If for a language L is given that L∗ = L, what does not necessarily follow?

(a) LL = L

(b) λ ∈ L
(c) L is infinite(c) is correct

(d) L is non-empty

Answer (c) is correct. If L = {λ}, then L∗ = L. So the assumption that
L∗ = L does not imply that L is infinite.

Statement LL = L holds, because if w ∈ LL, then w = w1w2 ∈ L∗ = L,
and if w ∈ L, then w = wλ ∈ LL, because by definition λ ∈ L∗ and hence
λ ∈ L.

Statement λ ∈ L holds, because by definition λ ∈ L∗, and hence λ ∈ L.

Statement L is non-empty holds, because if L = ∅, then L∗ = {λ} which
contradicts L∗ = L.

3. If for a language L is given that LR = L, what does necessarily follow?

(a) if w ∈ L∗ then also wR ∈ L∗(a) is correct

(b) there is a w ∈ L for which also wR ∈ L
(c) λ ∈ L, because λR = λ

(d) there is a w ∈ L with wR = w

Answer (a) is correct. Statement ‘if w ∈ L∗ then also wR ∈ L∗’ holds.
Let w ∈ L∗. Then there exists k ∈ N such that w = w1 · · ·wk and
wi ∈ L for i ∈ {1, . . . , k}. Note that wR = (w1 · · ·wk)R = wR

k · · ·wR
1 .

However, because LR = L, we have that wR
i ∈ L for i ∈ {1, . . . , k}. Hence

wR = wR
k · · ·wR

1 ∈ L∗.

Statement ‘there is a w ∈ L for which also wR ∈ L’ does not hold. Take
L = ∅. Then LR = ∅ = L. However, there is no w ∈ L, so certainly no
w ∈ L for which wR ∈ L.

Statement ‘λ ∈ L, because λR = λ’ does not hold. Take L = {a}. Then
LR = L, but λ 6∈ L.

Statement ‘there is a w ∈ L with wR = w’ does not hold. Take L =
{ab, ba}. Then LR = L, but (ab)R = ba 6= ab and (ba)R = ab 6= ba.

4. Let be given a deterministic finite automaton M := 〈Σ, Q, q0, F, δ〉, with
F 6= Q. What do we know?

(a) λ 6∈ L(M)

(b) M has a sink

(c) q0 6∈ F
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(d) none of the above(d) is correct

Answer (d) is correct. Let

M := // q0
a **

q1
a
jj

Then this automaton is a deterministic finite automaton with F 6= Q,
where Σ = {a}.
However, because q0 ∈ F the empty word λ is accepted, so statement
‘λ 6∈ L(M)’ does not hold.

However, M doesn’t have a sink, so statement ‘M has a sink’ does not
hold.

In addition q0 ∈ F , so statement ‘q0 6∈ F ’ does not hold.

Hence the proper answer is ‘none of the above’.

4. Let be given a deterministic finite automaton M := 〈Σ, Q, q0, F, δ〉, with
λ 6∈ L(M). What does not follow?

(a) F 6= Q

(b) M has a sink(b) is correct

(c) q0 6∈ F
(d) none of the above

Answer (b) is correct. Let

M := // q0
a **

q1
a
jj

Then this automaton is a deterministic finite automaton with λ 6∈ L(M),
where Σ = {a}. However, M has no sink.

Statement ‘L(M) 6= Σ∗’ holds for any automaton such that λ 6∈ L(M),
because λ ∈ Σ∗ and λ 6∈ L(M).

Statement ‘q0 6∈ F ’ holds for any automaton such that λ 6∈ L(M), because
if q0 ∈ F then automatically λ ∈ L(M).

5. The four color theorem says that planar graphs always have a chromatic
number that is not higher than four. Is the converse (each graph with
chromatic number not higher than four is always planar) also true?

(a) No, the graph K3,3 is not planar, but it has chromatic number two.(a) is correct

(b) Yes, the graph K4 has chromatic number four, and is planar.

(c) No, the graph K4 has chromatic number four, but can be drawn with
crossing edges.

(d) Yes, the graph K5 has chromatic number five, and is not planar.
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Answer (a) is correct. Because K3,3 is a bipartite graph, its chromatic
number is at most two and it is not difficult to see that it is actually two.
However, it is a well-known fact that K3,3 and K5 are non-planar. So we
have an example of a graph with a chromatic number not higher than four
which is not planar.

The second answer makes no sense because it only gives a single example
of a graph with chromatic number not higher than four, but the claim is
about all such graphs.

The third answer makes no sense because planarity means that the graph
can be drawn without crossing edges, so the fact that K4 can be drawn
with crossing edges is irrelevant.

The fourth answer makes no sense because it gives an example with chro-
matic number higher than four, but the claim is about graphs with a
chromatic number not higher than four.

5. Euler’s theorem is stated in the course notes about connected graphs with
at least two vertices. Are both of these conditions necessary?

(a) Yes, because there cannot be an Eulerian path if the graph is not
connected or has at most one vertex, no matter what the degrees
are.

(b) Yes, but for certain graphs there still can be an Eulerian path, even
if the graph is not connected or has at most one vertex.(b) is correct

(c) No, there are no connected graphs with less than two vertices, be-
cause then there cannot be a path in the graph, so the requirement
on the number of vertices is not necessary.

(d) No, all graphs with less than two vertices are connected, so the re-
quirement on the number of vertices is not necessary.

Answer (b) is correct. Let us see what happens if we drop the requirement
on the number of vertices being at least two. Let G1 := 〈{a} , ∅〉, hence a
graph with only one vertex and no edges:

G1

a

By definition it is connected. Then automatically this single vertex has
degree zero, which is even. So in fact, all vertices have an even degree and
an Eulerian path should exist, but since there is no path, there certainly
is no Eulerian path. So the condition about the vertices is needed.

Now let us see what happens if we drop the requirement of being con-
nected. Let G2 := 〈{a, b, c, d, e, f} , (a, b), (b, c), (c, a), (d, e), (e, f), (f, d)〉:
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G2a c e

fdb

Then G2 is not connected, but all vertices have an even degree. So an
Eulerian path should exist, but this cannot be the case since the graph
has two cycles that are not connected. So the condition about being
connected is also needed.

However, let G3 := 〈{a, b, c, d} , (a, b), (b, c), (c, a)〉:

G3a c

db

Then the graph is not connected, but there is an Eulerian path a→ b→ c.
So for some situations, Eulerian paths may still exist.

The first answer makes no sense because we just presented an example of
a graph that is not connected, but has an Eulerian path (and circuit).

The third and the fourth answer make no sense because the answer is ‘yes’.

6. Consider the Kripke model M:

x1 a c
++
a x2ll
ss

x3 b

OO

**
a x4

In which worlds does the formula �♦c hold?

(a) x1 and x2

(b) x1 and x4(b) is correct

(c) only x1

(d) none

Answer (b) is correct. Let us provide a table for the 
 relation:


 c ♦c �♦c
x1 1 0 1
x2 0 1 0
x3 0 1 0
x4 0 0 1
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So it follows from the table that �♦c holds in x1 and x4, but not in x2
and x3.

6. Consider the Kripke model M:

x1 a c
++
a x2ll
ss

x3 b

OO

**
a x4

In which worlds does the formula ♦�c hold?

(a) x1 and x2

(b) x1 and x4

(c) only x1

(d) none(d) is correct

Let us provide a table for the 
 relation:


 c �c ♦�c
x1 1 0 0
x2 0 0 0
x3 0 1 0
x4 1 1 0

So it follows from the table that there is no world where ♦�c holds.

Open questions

7. Translate into a formula of predicate logic:

Grass is green, but grass is not the only green plant.

Use the dictionary:

P the domain of plants
G(x) x is a grass
V (x) x is green

For instance:

∀x ∈ P [G(x)→ V (x)] ∧ ∃x ∈ P [¬G(x) ∧ V (x)]

7. Give a regular expression for the language:{
w ∈ {a, b}∗ | w contains ab, but w does not contain ba

}
For instance:

a∗abb∗
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7. Describe an LTL Kripke model in which the following LTL formula is true:

¬(aU b)

Truth in a model means truth in all worlds of the model, so we need to
make sure the formula holds in all worlds.

Any model that has no b somewhere will do.

So take for instance: M := 〈W,R, V 〉 where

W = {xi | i ∈ N}

R(xi) = {xj | j ∈ N and j ≥ i}

V (xi) = ∅ for i ∈ N

8. Write the following propositional formula according to the official grammar
from the course notes, and give the full truth table:

¬(¬(((¬a)→ a)→ a))

All we have to do is remove some parenthesis for the negation:

¬¬((¬a→ a)→ a)

The full truth table is:

a ¬a (¬a→ a) (¬a→ a)→ a ¬((¬a→ a)→ a) ¬¬((¬a→ a)→ a)
0 1 0 1 0 1
1 0 1 1 0 1

8. Give a non-deterministic finite automaton for the language

{a} ∪ {abn | n is odd}

with at most four states.

For instance:

M := // q0
a // q1

b // q2
b **

q3
b

jj

or

M := // q0
a //

a
  

q1

q2
b **

q3
b

jj
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8. We define recursively:

a0 = 1

an+1 = 2an − n for n ≥ 0

Prove by induction that an = n+ 1 for all n ≥ 0.

Proposition:0

an = n+ 1 for all n ≥ 0.

Proof by induction on n.1

We first define our predicate P as:
P (n) := an = n+ 12

Base Case. We show that P (0) holds, i.e. we show that3

a0 = 0 + 1

This indeed holds, because4

a0 = 1 = 0 + 1

Induction Step. Let k be any natural number such that k ≥ 0.5

Assume that we already know that P (k) holds, i.e. we assume that6
ak = k + 1 (Induction Hypothesis IH)

We now show that P (k + 1) also holds, i.e. we show that7
ak+1 = k + 1 + 1

This indeed holds, because8

ak+1 = 2ak − k
IH
= 2(k + 1)− k
= 2k + 2− k
= k + 2

= k + 1 + 1

Hence it follows by induction that P (n) holds for all n ≥ 0.9
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