Mix-automatic sequences

Hans Zantema

Technische Universiteit Eindhoven and Radboud Universiteit Nijmegen
MFOCS seminar, September 18, 2020

Infinite sequences

Infinite sequences

An infinite sequence $a=a_{0} a_{1} a_{2} \cdots$ is defined as a mapping from \mathbb{N} to some set 「

Infinite sequences

An infinite sequence $a=a_{0} a_{1} a_{2} \cdots$ is defined as a mapping from \mathbb{N} to some set 「

The simplest are periodic, that is, of the shape v^{ω} for $v \in \Gamma^{+}$

Infinite sequences

An infinite sequence $a=a_{0} a_{1} a_{2} \cdots$ is defined as a mapping from \mathbb{N} to some set 「

The simplest are periodic, that is, of the shape v^{ω} for $v \in \Gamma^{+}$
Then if $v=v_{0} v_{1} \cdots v_{n-1}$, then $a_{i}=v_{i \bmod n}$ for every $i \in \mathbb{N}$

Infinite sequences

An infinite sequence $a=a_{0} a_{1} a_{2} \cdots$ is defined as a mapping from \mathbb{N} to some set Γ

The simplest are periodic, that is, of the shape v^{ω} for $v \in \Gamma^{+}$
Then if $v=v_{0} v_{1} \cdots v_{n-1}$, then $a_{i}=v_{i \bmod n}$ for every $i \in \mathbb{N}$
Adding a finite string in front of a periodic sequence yields an ultimately periodic sequence, so is of the shape $u v^{\omega}$ for $u, v \in \Gamma^{+}$

How to give simple definitions of infinite sequences that are not ultimately periodic?

How to give simple definitions of infinite sequences that are not ultimately periodic?

An interesting and well-studied class of such sequences are k-automatic sequences

How to give simple definitions of infinite sequences that are not ultimately periodic?

An interesting and well-studied class of such sequences are k-automatic sequences

We will focus on 2-automatic sequences; it has several equivalent characterizations

How to give simple definitions of infinite sequences that are not ultimately periodic?

An interesting and well-studied class of such sequences are k-automatic sequences

We will focus on 2-automatic sequences; it has several equivalent characterizations

For $i \in \mathbb{N}$, we write $(i)_{2}$ for the binary notation of i

How to give simple definitions of infinite sequences that are not ultimately periodic?

An interesting and well-studied class of such sequences are k-automatic sequences

We will focus on 2-automatic sequences; it has several equivalent characterizations

For $i \in \mathbb{N}$, we write $(i)_{2}$ for the binary notation of i

$$
(0)_{2}=\epsilon,(1)_{2}=1,(2)_{2}=10,(23)_{2}=10111
$$

How to give simple definitions of infinite sequences that are not ultimately periodic?

An interesting and well-studied class of such sequences are k-automatic sequences

We will focus on 2-automatic sequences; it has several equivalent characterizations

For $i \in \mathbb{N}$, we write $(i)_{2}$ for the binary notation of i

$$
(0)_{2}=\epsilon,(1)_{2}=1,(2)_{2}=10,(23)_{2}=10111
$$

Definition

$a \in \Gamma^{\mathbb{N}}$ is 2-automatic if the language $\left\{(i)_{2} \mid a_{i}=x\right\}$ is regular for every $x \in \Gamma$

How to give simple definitions of infinite sequences that are not ultimately periodic?

An interesting and well-studied class of such sequences are k-automatic sequences

We will focus on 2-automatic sequences; it has several equivalent characterizations

For $i \in \mathbb{N}$, we write $(i)_{2}$ for the binary notation of i

$$
(0)_{2}=\epsilon,(1)_{2}=1,(2)_{2}=10,(23)_{2}=10111
$$

Definition

$a \in \Gamma^{\mathbb{N}}$ is 2-automatic if the language $\left\{(i)_{2} \mid a_{i}=x\right\}$ is regular for every $x \in \Gamma$

So $a \in\{0,1\}^{\mathbb{N}}$ is 2-automatic if $\left\{(i)_{2} \mid a_{i}=1\right\}$ is regular

Example: Thue-Morse

Example: Thue-Morse

The Thue-Morse sequence $m \in\{0,1\}^{\mathbb{N}}$ is defined by $m_{i}=1$ iff $(i)_{2}$ contains an odd number of ones

Example: Thue-Morse

The Thue-Morse sequence $m \in\{0,1\}^{\mathbb{N}}$ is defined by $m_{i}=1$ iff
$(i)_{2}$ contains an odd number of ones
$(0)_{2}=\epsilon$, so $m_{0}=0$
$(1)_{2}=1$, so $m_{1}=1$
(2) $)_{2}=10$, so $m_{2}=1$
$(3)_{2}=11$, so $m_{3}=0$

Example: Thue-Morse

The Thue-Morse sequence $m \in\{0,1\}^{\mathbb{N}}$ is defined by $m_{i}=1$ iff
$(i)_{2}$ contains an odd number of ones
$(0)_{2}=\epsilon$, so $m_{0}=0$
$(1)_{2}=1$, so $m_{1}=1$
(2) $)_{2}=10$, so $m_{2}=1$
$(3)_{2}=11$, so $m_{3}=0$

$$
m=0110100110010110 \cdots
$$

Example: Thue-Morse

The Thue-Morse sequence $m \in\{0,1\}^{\mathbb{N}}$ is defined by $m_{i}=1$ iff
$(i)_{2}$ contains an odd number of ones
$(0)_{2}=\epsilon$, so $m_{0}=0$
$(1)_{2}=1$, so $m_{1}=1$
(2) $)_{2}=10$, so $m_{2}=1$
$(3)_{2}=11$, so $m_{3}=0$

$$
m=0110100110010110 \cdots
$$

The set of strings with an odd number of ones is regular, so m is 2-automatic

Alternative definition:

Alternative definition:
define $f(0)=01, f(1)=10$

Alternative definition:
define $f(0)=01, f(1)=10$
$f(f((0))=0110$

Alternative definition:
define $f(0)=01, f(1)=10$
$f(f((0))=0110$
$f(f(f((0)))=01101001$

Alternative definition:
define $f(0)=01, f(1)=10$
$f(f((0))=0110$
$f(f(f((0)))=01101001$
$f(f(f(f((0))))=0110100110010110$

Alternative definition:
define $f(0)=01, f(1)=10$
$f(f((0))=0110$
$f(f(f((0)))=01101001$
$f(f(f(f((0))))=0110100110010110$

$$
m=f^{\omega}(0)
$$

Alternative definition:
define $f(0)=01, f(1)=10$
$f(f((0))=0110$
$f(f(f((0)))=01101001$
$f(f(f(f((0))))=0110100110010110$
$m=f^{\omega}(0)$
More general, if $f(x)=x u$ then $f^{\omega}(x)=x u f(u) f^{2}(u) f^{3}(u) \cdots$

Alternative definition:
define $f(0)=01, f(1)=10$
$f(f((0))=0110$
$f(f(f((0)))=01101001$
$f(f(f(f((0))))=0110100110010110$
$m=f^{\omega}(0)$
More general, if $f(x)=x u$ then $f^{\omega}(x)=x u f(u) f^{2}(u) f^{3}(u) \cdots$

Theorem

$a \in \Gamma^{\mathbb{N}}$ is 2-automatic if and only if there exists $\Delta, f: \Delta \rightarrow \Delta^{2}$, $x \in \Delta, f(x)=x u, \tau: \Delta \rightarrow \Gamma, a=\tau\left(f^{\omega}(x)\right)$

Alternative definition:
define $f(0)=01, f(1)=10$
$f(f((0))=0110$
$f(f(f((0)))=01101001$
$f(f(f(f((0))))=0110100110010110$
$m=f^{\omega}(0)$
More general, if $f(x)=x u$ then $f^{\omega}(x)=x u f(u) f^{2}(u) f^{3}(u) \cdots$

Theorem

$a \in \Gamma^{\mathbb{N}}$ is 2-automatic if and only if there exists $\Delta, f: \Delta \rightarrow \Delta^{2}$, $x \in \Delta, f(x)=x u, \tau: \Delta \rightarrow \Gamma, a=\tau\left(f^{\omega}(x)\right)$

In words: morphic with respect to a 2-uniform morphism

The kernel

The kernel

For a sequence $a: \mathbb{N} \rightarrow \Gamma, a=a_{0} a_{1} a_{2} \cdots$, we define

The kernel

For a sequence $a: \mathbb{N} \rightarrow \Gamma, a=a_{0} a_{1} a_{2} \cdots$, we define

$$
\operatorname{even}(a)=a_{0} a_{2} a_{4} \cdots, \quad \operatorname{odd}(a)=a_{1} a_{3} a_{5} \cdots
$$

For a sequence $a: \mathbb{N} \rightarrow \Gamma, a=a_{0} a_{1} a_{2} \cdots$, we define

$$
\operatorname{even}(a)=a_{0} a_{2} a_{4} \cdots, \quad \operatorname{odd}(a)=a_{1} a_{3} a_{5} \cdots
$$

The 2-kernel $K_{2}(a)$ is the smallest set of sequences such that

For a sequence $a: \mathbb{N} \rightarrow \Gamma, a=a_{0} a_{1} a_{2} \cdots$, we define

$$
\operatorname{even}(a)=a_{0} a_{2} a_{4} \cdots, \quad \operatorname{odd}(a)=a_{1} a_{3} a_{5} \cdots
$$

The 2-kernel $K_{2}(a)$ is the smallest set of sequences such that

- $a \in K_{2}(a)$

For a sequence $a: \mathbb{N} \rightarrow \Gamma, a=a_{0} a_{1} a_{2} \cdots$, we define

$$
\operatorname{even}(a)=a_{0} a_{2} a_{4} \cdots, \quad \operatorname{odd}(a)=a_{1} a_{3} a_{5} \cdots
$$

The 2-kernel $K_{2}(a)$ is the smallest set of sequences such that

- $a \in K_{2}(a)$
- if $b \in K_{2}(a)$, then even $(b) \in K_{2}(a)$ and $\operatorname{odd}(b) \in K_{2}(a)$

For a sequence $a: \mathbb{N} \rightarrow \Gamma, a=a_{0} a_{1} a_{2} \cdots$, we define

$$
\operatorname{even}(a)=a_{0} a_{2} a_{4} \cdots, \quad \operatorname{odd}(a)=a_{1} a_{3} a_{5} \cdots
$$

The 2-kernel $K_{2}(a)$ is the smallest set of sequences such that

- $a \in K_{2}(a)$
- if $b \in K_{2}(a)$, then even $(b) \in K_{2}(a)$ and $\operatorname{odd}(b) \in K_{2}(a)$ $\operatorname{even}(m)=m, \operatorname{odd}(m)=\bar{m}, \operatorname{even}(\bar{m})=\bar{m}, \operatorname{odd}(\bar{m})=m$

For a sequence $a: \mathbb{N} \rightarrow \Gamma, a=a_{0} a_{1} a_{2} \cdots$, we define

$$
\operatorname{even}(a)=a_{0} a_{2} a_{4} \cdots, \quad \operatorname{odd}(a)=a_{1} a_{3} a_{5} \cdots
$$

The 2-kernel $K_{2}(a)$ is the smallest set of sequences such that

- $a \in K_{2}(a)$
- if $b \in K_{2}(a)$, then even $(b) \in K_{2}(a)$ and $\operatorname{odd}(b) \in K_{2}(a)$
$\operatorname{even}(m)=m, \operatorname{odd}(m)=\bar{m}, \operatorname{even}(\bar{m})=\bar{m}, \operatorname{odd}(\bar{m})=m$
So $K_{2}(m)=\{m, \bar{m}\}$

For a sequence $a: \mathbb{N} \rightarrow \Gamma, a=a_{0} a_{1} a_{2} \cdots$, we define

$$
\operatorname{even}(a)=a_{0} a_{2} a_{4} \cdots, \quad \operatorname{odd}(a)=a_{1} a_{3} a_{5} \cdots
$$

The 2-kernel $K_{2}(a)$ is the smallest set of sequences such that

- $a \in K_{2}(a)$
- if $b \in K_{2}(a)$, then even $(b) \in K_{2}(a)$ and $\operatorname{odd}(b) \in K_{2}(a)$
$\operatorname{even}(m)=m, \operatorname{odd}(m)=\bar{m}, \operatorname{even}(\bar{m})=\bar{m}, \operatorname{odd}(\bar{m})=m$
So $K_{2}(m)=\{m, \bar{m}\}$

Theorem

A sequence a is 2-automatic if and only if $K_{2}(a)$ is finite

A theorem from Cobham states that the ultimately periodic sequences are the only that are both 2 -automatic and 3 -automatic

A theorem from Cobham states that the ultimately periodic sequences are the only that are both 2 -automatic and 3-automatic But one can think of sequences that have both a 2 -periodic and a 3-periodic flavor

A theorem from Cobham states that the ultimately periodic sequences are the only that are both 2 -automatic and 3-automatic

But one can think of sequences that have both a 2 -periodic and a 3-periodic flavor

Mix-automatic sequences form a proper extension of the class of automatic sequences

A theorem from Cobham states that the ultimately periodic sequences are the only that are both 2 -automatic and 3-automatic

But one can think of sequences that have both a 2 -periodic and a 3-periodic flavor

Mix-automatic sequences form a proper extension of the class of automatic sequences

They arise from a generalization of finite state automata where the input alphabet is state-dependent

This has been studied in a paper by Endrullis, Grabmayer, and Hendriks, published in LATA 2013:

This has been studied in a paper by Endrullis, Grabmayer, and Hendriks, published in LATA 2013:

Joerg Endrullis, Clemens Grabmayer and Dimitri Hendriks title: "Mix-Automatic Sequences"
Conference: Language and Automata Theory and Applications (LATA), 2013
publisher Springer Berlin Heidelberg, pages="262-274"

This has been studied in a paper by Endrullis, Grabmayer, and Hendriks, published in LATA 2013:

Joerg Endrullis, Clemens Grabmayer and Dimitri Hendriks title: "Mix-Automatic Sequences"
Conference: Language and Automata Theory and Applications (LATA), 2013
publisher Springer Berlin Heidelberg, pages=" 262-274"
The seminar project is to study this paper

This has been studied in a paper by Endrullis, Grabmayer, and Hendriks, published in LATA 2013:

Joerg Endrullis, Clemens Grabmayer and Dimitri Hendriks title: "Mix-Automatic Sequences"
Conference: Language and Automata Theory and Applications (LATA), 2013
publisher Springer Berlin Heidelberg, pages=" 262-274"
The seminar project is to study this paper
A more recent LATA paper (Z 2020), joined work with Wieb Bosma, studies complexity of an automatic sequence: the size of the corresponding automaton

This has been studied in a paper by Endrullis, Grabmayer, and Hendriks, published in LATA 2013:

Joerg Endrullis, Clemens Grabmayer and Dimitri Hendriks title: "Mix-Automatic Sequences"
Conference: Language and Automata Theory and Applications (LATA), 2013
publisher Springer Berlin Heidelberg, pages=" 262-274"
The seminar project is to study this paper
A more recent LATA paper (Z 2020), joined work with Wieb Bosma, studies complexity of an automatic sequence: the size of the corresponding automaton

The seminar project also may involve observations on complexity of mix-automatic sequences

