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Bounded natural functors: motivation

Aim: defining a definitional datatype package for Isabelle/HOL, that is

Compositional

Supports both datatypes and codatatypes, and allows mixing those

Allows some well-behaved non-free types (e.g. finite multisets)
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Functors

A functor has the following structure

F : Set → Set

mapF : (A → B) → F A → F B

mapF id = id

mapF (g ◦ f) = mapF g ◦mapF f

Example: List is a functor

mapList g [x1, ..., xn] = [g(x1), ..., g(xn)]

Márk Széles Bounded natural functors 25 January 2022 4 / 25



Algebras of a functor

F : Set → Set

An F-algebra is a pair, (A : Set, α : F (A) → A)

A map of F-algebras (A, α) and (B, β) is a map f : A → B making
the following diagram commute:

F (A) F (B)

A B

α

mapF f

β

f
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Initial algebra of a functor

An algebra (I , ctor) is initial, if for all algebras (A, α), there is a
unique map f : (I , ctor) → (A, α).

If it exists, the initial algebra is unique up to isomorphism

Lambek’s theorem: ctor is an isomorphism

I is the least fixed point of F :
I = µX .F (X )

F (I ) F (A)

I A

ctor
∼=

mapF f

α

!f
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Datatypes as initial algebras (example)

F : Set → Set
F (X ) = 1 + X

N is the initial algebra of F :

1 + N 1 + A

N A

ctor
∼=

mapF f

α

!f

We can use initiality to define recursive functions out of N
Example:

▶ A = Bool
▶ α(ι1(∗)) = tt
▶ α(ι2(b)) = not(b)
▶ The unique function f is isEven
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List is container-like and bounded

setList,A : List A → P(A)

setList,A [x1, ..., xn] = {x1, ..., xn}
setList is a natural transformation List → P, i.e. for all f : A → B the
following square commutes:

List A P(A)

List B P(B)

mapList f

setList,A

mapP f

setList,B

For all A, |setList,A xs| < bdList = ℵ0
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List has a relator structure

relList : Rel(A,B) → Rel(List(A), List(B))

(xs, ys) ∈ relList R ⇐⇒
∃(zs ∈ List(A× B)).
(setListzs ⊆ R ∧mapList π1 zs = xs ∧mapList π2 zs = ys),

where Rel(X ,Y ) denotes P(X × Y )

The relator commutes with relation composition, and preserves equality
relations

Example:

R = {(1, 2), (3, 4), (5, 6)}
[1, 3, 3] and [2, 4, 4] are related by the relator,
zs = [(1, 2), (3, 4), (3, 4)].

[1, 3, 5] and [2, 4] are NOT related.

[1, 3, 3] and [4, 2, 4] are NOT related.
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Bounded natural functors (BNFs)

A (unary) bounded natural functor is a functor F : Set → Set, with the
following properties:

F is container-like: there exists a natural transformation setF : F → P

F is bounded: ∀A,∀x ∈ F (A), |setF ,A(x)| < bdF , for some fixed
infinite cardinal bdF (independent of A).

F is equipped with a relator relF , that commutes with relation
composition and preserves equality relations

This definition can be generalized to functors with multiple arguments.
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Properties of bounded natural functors

Bounded natural functors (BNFs) are a suitable basis for a datatype
package for Isabelle/HOL

BNFs have initial algebras and final coalgebras

BNFs are closed under composition, initial algebras, and final
coalgebras

Basic functors are BNFs (e.g. constant, sum, product)

Some interesting non-free functors are also BNFs (e.g. finite multiset)

The initial algebras and final coalgebras of BNFs are expressible in
HOL (the proof uses the assumption about bdF )
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Syntax of the λ-calculus

Let α be the set of variables.

t ::= Var α | λα.t | t t

We could describe this syntax by a functor:

F (α, τ) = α+ (α× τ) + (τ × τ),

where τ is the set of possible terms. Then we can construct terms as

T (α) := µτ.F (α, τ)

However we also want to encode binding information!
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Binding-aware syntax of the λ-calculus

We distinguish between term variables (β1) and variables used in a
λ-binder (α1).

We distinguish between possible subterms, by considering whether a top
binding variable may bind in a subterm.

We describe this structure by a functor:

F (β1, α1, τ1, τ2) = β1 + (α1 × τ1) + (τ2 × τ2),

where τ1, τ2 are the sets of possible terms. A top binding variable may
bind in a term of kind τ1, but not in a term of kind τ2.
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Binding-aware syntax of the λ-calculus

F (β1, α1, τ1, τ2) = β1 + (α1 × τ1) + (τ2 × τ2),

F is a bounded natural functor

The binding dispatcher relation θ expresses in which kind of terms the
top binding variables may bind.

θ = {(α1, τ1)}
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Defining actual terms

We define the actual terms with variables in α by taking the least fixed
point of F:

T (α) = µ τ.F (α, α, τ, τ).

We have an isomorphism

ctor : α+ (α× T (α)) + (T (α)× T (α))
∼−→ T (α).

If t : T (α), there exists an x , such that t = ctor x .

topFree1 t := setF ,β1 x

topBind1 t := setF ,α1 x

rec1 t := setF ,τ1 x

rec2 t := setF ,τ2 x ,
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Binding-aware syntax of the λ-calculus with let

Let α be the set of variables.

t ::= Var α | λα.t | t t | let α = t in t

F (β1, α1, τ1, τ2) = β1 + (α1 × τ1) + (τ2 × τ2) + (α1 × τ2 × τ1)

F is a bounded natural functor

The binding dispatcher relation θ expresses, in which kind of terms
the top binding variables may bind.

θ = {(α1, τ1)}
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Map restriction on a functor

For an f : X → X , let Af = {x ∈ X | f (x) ̸= x}, the support of f is
defined as

supp(f ) = Af ∪ f (Af )

We restrict functoriality of F

to small-support endofunctions on term variables (β).

to small-support endobijections on binding variables (α).
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Binder types

A binder type is formed from a BNF, that

has term-variable, binding-variable and potential term inputs

has restricted functoriality

is equipped with a binding dispatcher relation between term inputs
and binding variable inputs.
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Towards α-equivalence (top bound variables)

topBindi ,j is the set of top binding variables of kind i , which may bind in
terms of kind j . In our case:

topBind1,1 t = topBind1 t

topBind1,2 t = ∅
To generally define topBindi ,j , we use the binding dispatcher relation θ:

topBindi ,j t =

{
topBindi t, if (αi , τj) ∈ θ

∅, otherwise
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Towards α-equivalence (free variables)

If t : T (α), there exists an x , such that t = ctor x .
We define free variables of t inductively:

a ∈ topFree1x ⇒ a ∈ FVars1 x

t ∈ recj x ∧ a ∈ FVars1 t \ topBind1,j x ⇒ a ∈ FVars1 x

To express renaming via an endobijection f , we define
mapT : (α

∼−→ α) → T (α) → T (α)

mapT f (ctor x) = ctor (mapF f f (mapT f ) (mapT f ) x)
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α-equivalence for the untyped λ-calculus

Let t1 = ctor x1, t2 = ctor x2.
If we can apply a suitable renaming f : α → α to x1 yielding x2, t1 and t2
are α-equivalent. We require f to satisfy some conditions cond(f ).

f is bijective

f does not change free variables in the recursive components of x1,
that are not top bound, i.e.

∀a ∈
⋃

j∈{1,2}

⋃
t∈recj x1

FVars t \ topBind1,j x1. f a = a

If cond(f ) and relF (=) (Gr f ) [(λ t1 t2 → mapT f t1 ≡θ t2)]
2 x1 x2,

then t1 ≡θ t2

α-quotiented terms are defined as T(α) := T (α)/ ≡θ
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Operations on α-quotiened terms

We can for example define the following operations on α-quotiened terms:

Binding-aware induction and recursion principles (easier to use, than
the ones inherited from raw terms)

Variable for variable substitution

Term for variable substitution
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Example: variable for variable substitution

We want to define a capture-avoiding variable substitution function on
α-quotiened terms

sub : (α → α) → T(α) → T(α)

Desired property of sub, expressed on raw terms of the form ctor x :

(topBind x ∩ FVars(ctor x) = ∅ ∧ topBind x ∩ supp f = ∅)
−→ sub f (ctor x) = ctor(mapF f id (sub f ) (sub f ) x),

where
supp(f ) = {a : α | f a ̸= a} ∪ f {a : α | f a ̸= a}

.
The binding-aware recursor can be used to define this operation.
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Thank you for your attention!
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