Bounded natural functors and their application to
describe binding-aware syntaxes

Mark Széles

email: mark.szeles@ru.nl

MFoCS Seminar
Radboud University Nijmegen

25 January 2022

Mark Széles Bounded natural functors 25 January 2022 1/25

Foundational, Compositional (Co)datatypes for
Higher-Order Logic
Category Theory Applied to Theorem Proving

T Popescu Jasmin Chaisian Blanchete
Tm.mm eieris schen Tt Uniursil o Techninche Vnrverial Minchen
mich, Germiny ermmany ich. Germany

ot o Moot S o
Bucharest Romanis

Abritcr—Intecactive shearemn provers base on bigher-order gencraied inductine) dstaypes. Melbam (26] bl abeady
loge (HOL) traditionally olow the defiitional sppeaach, reuc- devised such debritions] package b decaden ago. His

opeeations. Our ideas are packaze
i Libell, addresing freqent st o e

i Cemey e, Mol It
heoress proving. (o istaty e, ca

L Ivmnonverion
Higher order ogic (HOL, Sect. 1) forms the basis of scverl
Poplr imerctive theoeers provers, notably HOLA 10], HOL 1€l users chould sk e allowed o defne (copdstaypes
with (cowecumson thevagh well-bekaved no-free 1ype con-

structon. sach a» the it st comstucior

coustatype o tree mu”m_\m
This puper presents & fll ool framenoek Tor
dteing dnapes i duyrs 0L, g it
oo of

sarsch 1 o harsh sskimasier. AL the priss. i e pravers, o famework. imposes
itive bevel, 3 new type i defined by carving oul sn isororphic 0 syedactic sesirictions o the ype consructors thal <
cipst in neted (eojeecurion.

The mos o undbtedl an
e dlstype package, which sulomsdes th derivation of (fsely nd thal allows iniial and il construcions in & suliiently

=] F = = £ DA

Mark Széles ounded natural functors

Bounded natural functors: motivation

Aim: defining a definitional datatype package for Isabelle/HOL, that is

@ Compositional
@ Supports both datatypes and codatatypes, and allows mixing those

@ Allows some well-behaved non-free types (e.g. finite multisets)

25 January 2022 3/25

Bounded natural functors

Mark Széles

Functors

A functor has the following structure
o F: Set — Set

mape: (A—-B)—-FA—>FB

mapg id =id

mapg (g o f) =mapg g omapg f

Example: List is a functor

map; s+ & [X17 "‘7Xf7] = [g(X1)7 ”'7g(Xn)]

Mark Széles Bounded natural functors 25 January 2022 4/25

Algebras of a functor

F : Set — Set

e An F-algebra is a pair, (A: Set, a: F(A) — A)
@ A map of F-algebras (A, «) and (B, 3) is a map f : A— B making
the following diagram commute:

F(A) =L F(B)

b

A—Ff B

Mark Széles Bounded natural functors 25 January 2022 5/25

Initial algebra of a functor

@ An algebra (/, ctor) is initial, if for all algebras (A, «), there is a
unique map f : (I, ctor) — (A, o).

o If it exists, the initial algebra is unique up to isomorphism
@ Lambek's theorem: ctor is an isomorphism

@ | is the least fixed point of F :
I = uX.F(X)

Mark Széles Bounded natural functors 25 January 2022 6/25

Datatypes as initial algebras (example)

F : Set — Set
F(X)=1+X
@ N is the initial algebra of F:

mapr f

1+N— 1+ A

lctor l
~ «a

N A

@ We can use initiality to define recursive functions out of N
o Example:

» A= Bool

» au(x)) =tt

> a(2(b)) = not(b)

» The unique function f is isEven

Mark Széles Bounded natural functors 25 January 2022 7/25

List is container-like and bounded

@ setyist A @ List A — P(A)

@ setyjst A [X1,..s Xn) = {X1, ..., Xn}
@ set;;s+ is a natural transformation List — P, i.e. for all f : A — B the
following square commutes:

Llst A

List A 214 — P(A)
mapyjst f mapp f
List B <28 p(B)

e For all A, [setyjst aXs| < bdist = No

Mark Széles Bounded natural functors 25 January 2022 8/25

List has a relator structure
rel jst - Rel(A, B) — Rel(List(A), List(B))

(xs,ys) € relpjs R <~
(zs € List(A x B)).
(setristzs € R A\ mapyiss m1 25 = XS A\ mappst T2 zS = ys),

where Rel(X, Y denotes P(X x Y)

The relator commutes with relation composition, and preserves equality
relations

Example:

e R=1{(1,2),(3,4),(5,6)}

e [1,3,3] and [2,4, 4] are related by the relator,
zs =1[(1,2),(3,4),(3,4)].

e [1,3,5] and [2,4] are NOT related.

e [1,3,3] and [4,2,4] are NOT related.

Mark Széles Bounded natural functors 25 January 2022 9/25

Bounded natural functors (BNFs)

A (unary) bounded natural functor is a functor F : Set — Set, with the
following properties:

@ F is container-like: there exists a natural transformation setr : F — P

e F is bounded: VA,Vx € F(A),|setr a(x)| < bdF, for some fixed
infinite cardinal bdg (independent of A).

o F is equipped with a relator relr, that commutes with relation
composition and preserves equality relations

This definition can be generalized to functors with multiple arguments.

Mark Széles Bounded natural functors 25 January 2022 10/25

Properties of bounded natural functors

Bounded natural functors (BNFs) are a suitable basis for a datatype
package for Isabelle/HOL

BNFs have initial algebras and final coalgebras

@ BNFs are closed under composition, initial algebras, and final
coalgebras
@ Basic functors are BNFs (e.g. constant, sum, product)

Some interesting non-free functors are also BNFs (e.g. finite multiset)

The initial algebras and final coalgebras of BNFs are expressible in
HOL (the proof uses the assumption about bdf)

Mark Széles Bounded natural functors 25 January 2022 11/25

Bindings as Bounded Natural Functors

JASMIN CHRISTIAN BLANCHETTE Vrije Universitet Amsterdam the Netherlands ard Max Planck-
Institot fur Informatk, Germany

LORENZO GHERI, Middlesex University Landon, UK

ANDREI POPESCU, Midlesex University Londan, UK and Institute of Mathematics Sirmion Stoilow of
the Romanian Academy, Romania

DMITRIY TRAVTEL 118 g S st

y i inder types

complex inding: branching
{ypes. it a modular fasion, mspug ‘ot commiting 15 any symactc format the framework is “concrete:
and

ming P iy
higher-order logc and has been ormlaed st proaf assistant [sabelle HOL

CCS Concepts: - Theary of computation — Logic and verification; Higher order logic: Type struc-
tures.

Additional Key Words and ductive and
ACM Reference Format:

Jasmin Christian Blanchette. Lorenzo Gheri. Andrei Popescu. and Dmitriy Traytel. 2019. Bindings as Bounded
Natural Functors. #roc. ACM Program. Lang. 3, POPL. Atticle 22 January 2015). 34 pages. htips://doiorg/10.
11453250935

1 INTRODUCTION
The goal of this paper is to systematize and ¢ the task of constructing and reasoming about

variable binding and variable substitution. namely the operations of binding variables into terms
and ofeplaing themwith other variablesor terms i a wll-scoped fshion. These mechunims
play & fundamental rolc in

There i a Lo of terature o this topic. propoun i range ﬂihlm‘lmg formats (e.g., Pot-
tier [2006], Sewell et al. [2010). Urban and Kaliszyk [2012), Weirich et al. [2011]) and reasoning
‘mechanisms fe.g., Kaiscr ct al. [2017], Chlipala [2008], Pitts [2006], Felty ct al. [2015a], Urban ct al
[2007]). The POPLmark formalization challenge [Aydemir et al. 2005] has received quite a lot
of attention in the programming language and interactive thearem proving communities. And

Aohory aiesces. i Chiician Blamchete, et of Campater Scence, Ve Univerated Amdertarm, e

Bowlelaan 1851 Amserdam, 1081 HY,
far Informatik. Saoetand [nformatics Campas E1 4. Seasbriscken, 6123, Germasy: Lo
Technology. Mabdlesex Univessity Larudan. The Burrogls, Loados, NWA 45T, UK. 1557 1@kve mdx.ac sk: Ansrci Popeset,
Noilesen Unersi Lo, Schoot ofScoee s Tcoeey The Buerough Landon, NW4 48T UK. Bopescuinds
ek, stitute s i 21 Buctares, MM,

Dmteiy Traytel. Institme. omputer
[ity

T ac
2019 Copyright held by the crner asthor(sh
ATS-L4WINLARTZ

it doscrg 10 11453290355

[} = =

Mark Széles Bindings as BNF:

Syntax of the A-calculus

Let « be the set of variables.
to=Varal|dlat|tt
We could describe this syntax by a functor:
Fla,7)=a+ (ax 1)+ (1 x 1),
where 7 is the set of possible terms. Then we can construct terms as
T(a) := pr.F(a, 1)

However we also want to encode binding information!

Mark Széles Bindings as BNFs 25 January 2022 13 /25

Binding-aware syntax of the A-calculus

We distinguish between term variables (1) and variables used in a
A-binder (o).

We distinguish between possible subterms, by considering whether a top
binding variable may bind in a subterm.

We describe this structure by a functor:

F(B1,a1,71,m2) = 1+ (01 X 1) + (12 X T2),

where 71, 72 are the sets of possible terms. A top binding variable may
bind in a term of kind 71, but not in a term of kind 7.

Mark Széles Bindings as BNFs 25 January 2022 14 /25

Binding-aware syntax of the A-calculus

F(,Bl,OZl,Tl,TQ) = Bl + (al X 7-1) + (7-2 X 7-2))

@ F is a bounded natural functor

@ The binding dispatcher relation 6 expresses in which kind of terms the
top binding variables may bind.

0= {(a1,7)}

Mark Széles Bindings as BNFs 25 January 2022 15/25

Defining actual terms

We define the actual terms with variables in « by taking the least fixed
point of F:

T(a) = p7.Fla,a,7,7).

We have an isomorphism

ctor : a+ (a x T(a)) + (T(a) x T(a)) = T(a).

If t: T(«), there exists an x, such that t = ctor x.
@ topFree; t := setr g, x
@ topBind; t := setr o, x
@ recy t := setr ,, X

@ recy t 1= setr ;, X,

Mark Széles Bindings as BNFs 25 January 2022 16 /25

Binding-aware syntax of the A-calculus with let

Let o be the set of variables.
tuo=Vara|da.t|tt|leta =tint
F(ﬁl,al,Tl,Tz) =p1+ (041 X 7'1) + (7’2 X 7’2) + (al X Tp X 7’1)

@ F is a bounded natural functor

@ The binding dispatcher relation 6 expresses, in which kind of terms
the top binding variables may bind.

0= {(a1,m)}

Mark Széles Bindings as BNFs 25 January 2022 17 /25

Map restriction on a functor

Foran f : X — X, let Af = {x € X | f(x) # x}, the support of f is
defined as

supp(f) = Ar U f(Af)
We restrict functoriality of F
@ to small-support endofunctions on term variables (/3).

@ to small-support endobijections on binding variables («).

Mark Széles Bindings as BNFs 25 January 2022 18 /25

Binder types

A binder type is formed from a BNF, that
@ has term-variable, binding-variable and potential term inputs
@ has restricted functoriality

@ is equipped with a binding dispatcher relation between term inputs
and binding variable inputs.

Mark Széles Bindings as BNFs 25 January 2022 19 /25

Towards a-equivalence (top bound variables)

topBind; ; is the set of top binding variables of kind /, which may bind in
terms of kind j. In our case:

e topBind; 1 t = topBind; t
@ topBindip t = 0

To generally define topBind; j, we use the binding dispatcher relation 6:

topBind; t, if (o, 7) €6
topBind; ; t = opBind; £, if (a TJ) ©
0, otherwise

Mark Széles Bindings as BNFs 25 January 2022 20/25

Towards a-equivalence (free variables)

If t: T(«), there exists an x, such that t = ctor x.
We define free variables of t inductively:

@ a € topFree;x = a € FVars; x
e terecjx Naec FVarsy t\ topBind; ; x = a € FVars; x

To express renaming via an endobijection f, we define
mapt : (@ = a) — T(a) = T(a)

mapy f (ctor x) = ctor (mapg f f (mapy f) (mapy) x)

Mark Széles Bindings as BNFs 25 January 2022 21/25

a-equivalence for the untyped A-calculus

Let t; = ctor x1, t» = ctor xo.
If we can apply a suitable renaming f : & — a to xj yielding xo, t; and t»
are a-equivalent. We require f to satisfy some conditions cond(f).

o f is bijective
@ f does not change free variables in the recursive components of xj,
that are not top bound, i.e.

Vae U U FVars t \ topBindy ;x1. fa=a
j€{1’2} tErecj X1

If cond(f) and relg (=) (Grf)[(At1 ta — mapy f t1 = t2)]*> x1 X2,
then t1 =g t»

a-quotiented terms are defined as T(«) == T(«)/ =

Mark Széles Bindings as BNFs 25 January 2022 22/25

Operations on a-quotiened terms

We can for example define the following operations on a-quotiened terms:

e Binding-aware induction and recursion principles (easier to use, than
the ones inherited from raw terms)

@ Variable for variable substitution

@ Term for variable substitution

Mark Széles Bindings as BNFs 25 January 2022 23/25

Example: variable for variable substitution

We want to define a capture-avoiding variable substitution function on
a-quotiened terms

sub: (@ — a) = T(a) = T(a)
Desired property of sub, expressed on raw terms of the form ctor x:

(topBind x N FVars(ctor x) = () A topBind x N supp f = 0)
— sub f (ctor x) = ctor(mapg f id (sub f) (sub f) x),

where

supp(fy={a:«a|fa#talUf{a:«a|fa#a}

The binding-aware recursor can be used to define this operation.

Mark Széles Bindings as BNFs

25 January 2022 24 /25

Thank you for your attention!

Mark Széles Bindings as BNFs 25 January 2022 25/25

