
Bounded natural functors and their application to
describe binding-aware syntaxes

Márk Széles
email: mark.szeles@ru.nl

MFoCS Seminar
Radboud University Nijmegen

25 January 2022

Márk Széles Bounded natural functors 25 January 2022 1 / 25

Márk Széles Bounded natural functors 25 January 2022 2 / 25

Bounded natural functors: motivation

Aim: defining a definitional datatype package for Isabelle/HOL, that is

Compositional

Supports both datatypes and codatatypes, and allows mixing those

Allows some well-behaved non-free types (e.g. finite multisets)

Márk Széles Bounded natural functors 25 January 2022 3 / 25

Functors

A functor has the following structure

F : Set → Set

mapF : (A → B) → F A → F B

mapF id = id

mapF (g ◦ f) = mapF g ◦mapF f

Example: List is a functor

mapList g [x1, ..., xn] = [g(x1), ..., g(xn)]

Márk Széles Bounded natural functors 25 January 2022 4 / 25

Algebras of a functor

F : Set → Set

An F-algebra is a pair, (A : Set, α : F (A) → A)

A map of F-algebras (A, α) and (B, β) is a map f : A → B making
the following diagram commute:

F (A) F (B)

A B

α

mapF f

β

f

Márk Széles Bounded natural functors 25 January 2022 5 / 25

Initial algebra of a functor

An algebra (I , ctor) is initial, if for all algebras (A, α), there is a
unique map f : (I , ctor) → (A, α).

If it exists, the initial algebra is unique up to isomorphism

Lambek’s theorem: ctor is an isomorphism

I is the least fixed point of F :
I = µX .F (X)

F (I) F (A)

I A

ctor
∼=

mapF f

α

!f

Márk Széles Bounded natural functors 25 January 2022 6 / 25

Datatypes as initial algebras (example)

F : Set → Set
F (X) = 1 + X

N is the initial algebra of F :

1 + N 1 + A

N A

ctor
∼=

mapF f

α

!f

We can use initiality to define recursive functions out of N
Example:

▶ A = Bool
▶ α(ι1(∗)) = tt
▶ α(ι2(b)) = not(b)
▶ The unique function f is isEven

Márk Széles Bounded natural functors 25 January 2022 7 / 25

List is container-like and bounded

setList,A : List A → P(A)

setList,A [x1, ..., xn] = {x1, ..., xn}
setList is a natural transformation List → P, i.e. for all f : A → B the
following square commutes:

List A P(A)

List B P(B)

mapList f

setList,A

mapP f

setList,B

For all A, |setList,A xs| < bdList = ℵ0

Márk Széles Bounded natural functors 25 January 2022 8 / 25

List has a relator structure

relList : Rel(A,B) → Rel(List(A), List(B))

(xs, ys) ∈ relList R ⇐⇒
∃(zs ∈ List(A× B)).
(setListzs ⊆ R ∧mapList π1 zs = xs ∧mapList π2 zs = ys),

where Rel(X ,Y) denotes P(X × Y)

The relator commutes with relation composition, and preserves equality
relations

Example:

R = {(1, 2), (3, 4), (5, 6)}
[1, 3, 3] and [2, 4, 4] are related by the relator,
zs = [(1, 2), (3, 4), (3, 4)].

[1, 3, 5] and [2, 4] are NOT related.

[1, 3, 3] and [4, 2, 4] are NOT related.

Márk Széles Bounded natural functors 25 January 2022 9 / 25

Bounded natural functors (BNFs)

A (unary) bounded natural functor is a functor F : Set → Set, with the
following properties:

F is container-like: there exists a natural transformation setF : F → P

F is bounded: ∀A,∀x ∈ F (A), |setF ,A(x)| < bdF , for some fixed
infinite cardinal bdF (independent of A).

F is equipped with a relator relF , that commutes with relation
composition and preserves equality relations

This definition can be generalized to functors with multiple arguments.

Márk Széles Bounded natural functors 25 January 2022 10 / 25

Properties of bounded natural functors

Bounded natural functors (BNFs) are a suitable basis for a datatype
package for Isabelle/HOL

BNFs have initial algebras and final coalgebras

BNFs are closed under composition, initial algebras, and final
coalgebras

Basic functors are BNFs (e.g. constant, sum, product)

Some interesting non-free functors are also BNFs (e.g. finite multiset)

The initial algebras and final coalgebras of BNFs are expressible in
HOL (the proof uses the assumption about bdF)

Márk Széles Bounded natural functors 25 January 2022 11 / 25

Márk Széles Bindings as BNFs 25 January 2022 12 / 25

Syntax of the λ-calculus

Let α be the set of variables.

t ::= Var α | λα.t | t t

We could describe this syntax by a functor:

F (α, τ) = α+ (α× τ) + (τ × τ),

where τ is the set of possible terms. Then we can construct terms as

T (α) := µτ.F (α, τ)

However we also want to encode binding information!

Márk Széles Bindings as BNFs 25 January 2022 13 / 25

Binding-aware syntax of the λ-calculus

We distinguish between term variables (β1) and variables used in a
λ-binder (α1).

We distinguish between possible subterms, by considering whether a top
binding variable may bind in a subterm.

We describe this structure by a functor:

F (β1, α1, τ1, τ2) = β1 + (α1 × τ1) + (τ2 × τ2),

where τ1, τ2 are the sets of possible terms. A top binding variable may
bind in a term of kind τ1, but not in a term of kind τ2.

Márk Széles Bindings as BNFs 25 January 2022 14 / 25

Binding-aware syntax of the λ-calculus

F (β1, α1, τ1, τ2) = β1 + (α1 × τ1) + (τ2 × τ2),

F is a bounded natural functor

The binding dispatcher relation θ expresses in which kind of terms the
top binding variables may bind.

θ = {(α1, τ1)}

Márk Széles Bindings as BNFs 25 January 2022 15 / 25

Defining actual terms

We define the actual terms with variables in α by taking the least fixed
point of F:

T (α) = µ τ.F (α, α, τ, τ).

We have an isomorphism

ctor : α+ (α× T (α)) + (T (α)× T (α))
∼−→ T (α).

If t : T (α), there exists an x , such that t = ctor x .

topFree1 t := setF ,β1 x

topBind1 t := setF ,α1 x

rec1 t := setF ,τ1 x

rec2 t := setF ,τ2 x ,

Márk Széles Bindings as BNFs 25 January 2022 16 / 25

Binding-aware syntax of the λ-calculus with let

Let α be the set of variables.

t ::= Var α | λα.t | t t | let α = t in t

F (β1, α1, τ1, τ2) = β1 + (α1 × τ1) + (τ2 × τ2) + (α1 × τ2 × τ1)

F is a bounded natural functor

The binding dispatcher relation θ expresses, in which kind of terms
the top binding variables may bind.

θ = {(α1, τ1)}

Márk Széles Bindings as BNFs 25 January 2022 17 / 25

Map restriction on a functor

For an f : X → X , let Af = {x ∈ X | f (x) ̸= x}, the support of f is
defined as

supp(f) = Af ∪ f (Af)

We restrict functoriality of F

to small-support endofunctions on term variables (β).

to small-support endobijections on binding variables (α).

Márk Széles Bindings as BNFs 25 January 2022 18 / 25

Binder types

A binder type is formed from a BNF, that

has term-variable, binding-variable and potential term inputs

has restricted functoriality

is equipped with a binding dispatcher relation between term inputs
and binding variable inputs.

Márk Széles Bindings as BNFs 25 January 2022 19 / 25

Towards α-equivalence (top bound variables)

topBindi ,j is the set of top binding variables of kind i , which may bind in
terms of kind j . In our case:

topBind1,1 t = topBind1 t

topBind1,2 t = ∅
To generally define topBindi ,j , we use the binding dispatcher relation θ:

topBindi ,j t =

{
topBindi t, if (αi , τj) ∈ θ

∅, otherwise

Márk Széles Bindings as BNFs 25 January 2022 20 / 25

Towards α-equivalence (free variables)

If t : T (α), there exists an x , such that t = ctor x .
We define free variables of t inductively:

a ∈ topFree1x ⇒ a ∈ FVars1 x

t ∈ recj x ∧ a ∈ FVars1 t \ topBind1,j x ⇒ a ∈ FVars1 x

To express renaming via an endobijection f , we define
mapT : (α

∼−→ α) → T (α) → T (α)

mapT f (ctor x) = ctor (mapF f f (mapT f) (mapT f) x)

Márk Széles Bindings as BNFs 25 January 2022 21 / 25

α-equivalence for the untyped λ-calculus

Let t1 = ctor x1, t2 = ctor x2.
If we can apply a suitable renaming f : α → α to x1 yielding x2, t1 and t2
are α-equivalent. We require f to satisfy some conditions cond(f).

f is bijective

f does not change free variables in the recursive components of x1,
that are not top bound, i.e.

∀a ∈
⋃

j∈{1,2}

⋃
t∈recj x1

FVars t \ topBind1,j x1. f a = a

If cond(f) and relF (=) (Gr f) [(λ t1 t2 → mapT f t1 ≡θ t2)]
2 x1 x2,

then t1 ≡θ t2

α-quotiented terms are defined as T(α) := T (α)/ ≡θ

Márk Széles Bindings as BNFs 25 January 2022 22 / 25

Operations on α-quotiened terms

We can for example define the following operations on α-quotiened terms:

Binding-aware induction and recursion principles (easier to use, than
the ones inherited from raw terms)

Variable for variable substitution

Term for variable substitution

Márk Széles Bindings as BNFs 25 January 2022 23 / 25

Example: variable for variable substitution

We want to define a capture-avoiding variable substitution function on
α-quotiened terms

sub : (α → α) → T(α) → T(α)

Desired property of sub, expressed on raw terms of the form ctor x :

(topBind x ∩ FVars(ctor x) = ∅ ∧ topBind x ∩ supp f = ∅)
−→ sub f (ctor x) = ctor(mapF f id (sub f) (sub f) x),

where
supp(f) = {a : α | f a ̸= a} ∪ f {a : α | f a ̸= a}

.
The binding-aware recursor can be used to define this operation.

Márk Széles Bindings as BNFs 25 January 2022 24 / 25

Thank you for your attention!

Márk Széles Bindings as BNFs 25 January 2022 25 / 25

