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Bounded natural functors: motivation

Aim: defining a definitional datatype package for Isabelle/HOL, that is

@ Compositional
@ Supports both datatypes and codatatypes, and allows mixing those

@ Allows some well-behaved non-free types (e.g. finite multisets)

25 January 2022 3/25

Bounded natural functors

Mark Széles



Functors

A functor has the following structure
o F: Set — Set

mape: (A—-B)—-FA—>FB

mapg id =id

mapg (g o f) =mapg g omapg f

Example: List is a functor

map; s+ & [X17 "‘7Xf7] = [g(X1)7 ”'7g(Xn)]
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Algebras of a functor

F : Set — Set

e An F-algebra is a pair, (A: Set, a: F(A) — A)
@ A map of F-algebras (A, «) and (B, 3) is a map f : A— B making
the following diagram commute:

F(A) =L F(B)

b

A—Ff B
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Initial algebra of a functor

@ An algebra (/, ctor) is initial, if for all algebras (A, «), there is a
unique map f : (I, ctor) — (A, o).

o If it exists, the initial algebra is unique up to isomorphism
@ Lambek's theorem: ctor is an isomorphism

@ | is the least fixed point of F :
I = uX.F(X)
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Datatypes as initial algebras (example)

F : Set — Set
F(X)=1+X
@ N is the initial algebra of F:

mapr f

1+N— 1+ A

lctor l
~ «a

N A

@ We can use initiality to define recursive functions out of N
o Example:

» A= Bool

» au(x)) =tt

> a(2(b)) = not(b)

» The unique function f is isEven
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List is container-like and bounded

@ setyist A @ List A — P(A)

@ setyjst A [X1,..s Xn) = {X1, ..., Xn}
@ set;;s+ is a natural transformation List — P, i.e. for all f : A — B the
following square commutes:

Llst A

List A 214 — P(A)
mapyjst f mapp f
List B <28 p(B)

e For all A, [setyjst aXs| < bdist = No
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List has a relator structure
rel jst - Rel(A, B) — Rel(List(A), List(B))

(xs,ys) € relpjs R <~
(zs € List(A x B)).
(setristzs € R A\ mapyiss m1 25 = XS A\ mappst T2 zS = ys),

where Rel(X, Y denotes P(X x Y)

The relator commutes with relation composition, and preserves equality
relations

Example:

e R=1{(1,2),(3,4),(5,6)}

e [1,3,3] and [2,4, 4] are related by the relator,
zs =1[(1,2),(3,4),(3,4)].

e [1,3,5] and [2,4] are NOT related.

e [1,3,3] and [4,2,4] are NOT related.
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Bounded natural functors (BNFs)

A (unary) bounded natural functor is a functor F : Set — Set, with the
following properties:

@ F is container-like: there exists a natural transformation setr : F — P

e F is bounded: VA,Vx € F(A),|setr a(x)| < bdF, for some fixed
infinite cardinal bdg (independent of A).

o F is equipped with a relator relr, that commutes with relation
composition and preserves equality relations

This definition can be generalized to functors with multiple arguments.
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Properties of bounded natural functors

Bounded natural functors (BNFs) are a suitable basis for a datatype
package for Isabelle/HOL

BNFs have initial algebras and final coalgebras

@ BNFs are closed under composition, initial algebras, and final
coalgebras
@ Basic functors are BNFs (e.g. constant, sum, product)

Some interesting non-free functors are also BNFs (e.g. finite multiset)

The initial algebras and final coalgebras of BNFs are expressible in
HOL (the proof uses the assumption about bdf)
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Syntax of the A-calculus

Let « be the set of variables.
to=Varal|dlat|tt
We could describe this syntax by a functor:
Fla,7)=a+ (ax 1)+ (1 x 1),
where 7 is the set of possible terms. Then we can construct terms as
T(a) := pr.F(a, 1)

However we also want to encode binding information!
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Binding-aware syntax of the A-calculus

We distinguish between term variables (1) and variables used in a
A-binder (o).

We distinguish between possible subterms, by considering whether a top
binding variable may bind in a subterm.

We describe this structure by a functor:

F(B1,a1,71,m2) = 1+ (01 X 1) + (12 X T2),

where 71, 72 are the sets of possible terms. A top binding variable may
bind in a term of kind 71, but not in a term of kind 7.
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Binding-aware syntax of the A-calculus

F(,Bl,OZl,Tl,TQ) = Bl + (al X 7-1) + (7-2 X 7-2))

@ F is a bounded natural functor

@ The binding dispatcher relation 6 expresses in which kind of terms the
top binding variables may bind.

0= {(a1,7)}
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Defining actual terms

We define the actual terms with variables in « by taking the least fixed
point of F:

T(a) = p7.Fla,a,7,7).

We have an isomorphism

ctor : a+ (a x T(a)) + (T(a) x T(a)) = T(a).

If t: T(«), there exists an x, such that t = ctor x.
@ topFree; t := setr g, x
@ topBind; t := setr o, x
@ recy t := setr ,, X

@ recy t 1= setr ;, X,
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Binding-aware syntax of the A-calculus with let

Let o be the set of variables.
tuo=Vara|da.t|tt|leta =tint
F(ﬁl,al,Tl,Tz) =p1+ (041 X 7'1) + (7’2 X 7’2) + (al X Tp X 7’1)

@ F is a bounded natural functor

@ The binding dispatcher relation 6 expresses, in which kind of terms
the top binding variables may bind.

0= {(a1,m)}
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Map restriction on a functor

Foran f : X — X, let Af = {x € X | f(x) # x}, the support of f is
defined as

supp(f) = Ar U f(Af)
We restrict functoriality of F
@ to small-support endofunctions on term variables (/3).

@ to small-support endobijections on binding variables («).
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Binder types

A binder type is formed from a BNF, that
@ has term-variable, binding-variable and potential term inputs
@ has restricted functoriality

@ is equipped with a binding dispatcher relation between term inputs
and binding variable inputs.
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Towards a-equivalence (top bound variables)

topBind; ; is the set of top binding variables of kind /, which may bind in
terms of kind j. In our case:

e topBind; 1 t = topBind; t
@ topBindip t = 0

To generally define topBind; j, we use the binding dispatcher relation 6:

topBind; t, if (o, 7) €6
topBind; ; t = opBind; £, if (a TJ) ©
0, otherwise
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Towards a-equivalence (free variables)

If t: T(«), there exists an x, such that t = ctor x.
We define free variables of t inductively:

@ a € topFree;x = a € FVars; x
e terecjx Naec FVarsy t\ topBind; ; x = a € FVars; x

To express renaming via an endobijection f, we define
mapt : (@ = a) — T(a) = T(a)

mapy f (ctor x) = ctor (mapg f f (mapy f) (mapy ) x)
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a-equivalence for the untyped A-calculus

Let t; = ctor x1, t» = ctor xo.
If we can apply a suitable renaming f : & — a to xj yielding xo, t; and t»
are a-equivalent. We require f to satisfy some conditions cond(f).

o f is bijective
@ f does not change free variables in the recursive components of xj,
that are not top bound, i.e.

Vae U U FVars t \ topBindy ;x1. fa=a
j€{1’2} tErecj X1

If cond(f) and relg (=) (Grf)[(At1 ta — mapy f t1 = t2)]*> x1 X2,
then t1 =g t»

a-quotiented terms are defined as T(«) == T(«)/ =
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Operations on a-quotiened terms

We can for example define the following operations on a-quotiened terms:

e Binding-aware induction and recursion principles (easier to use, than
the ones inherited from raw terms)

@ Variable for variable substitution

@ Term for variable substitution
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Example: variable for variable substitution

We want to define a capture-avoiding variable substitution function on
a-quotiened terms

sub: (@ — a) = T(a) = T(a)
Desired property of sub, expressed on raw terms of the form ctor x:

(topBind x N FVars(ctor x) = () A topBind x N supp f = 0)
— sub f (ctor x) = ctor(mapg f id (sub f) (sub f) x),

where

supp(fy={a:«a|fa#talUf{a:«a|fa#a}

The binding-aware recursor can be used to define this operation.
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Thank you for your attention!
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