
Nominal G-Automata
Steven Bronsveld

Supervisor: dr. J.C. Rot

Part I

Automata Theory in Nominal Sets
(2012)
Mikołaj Bojańczyk, Bartek Klin and Sławomir Lasota

Logical Methods in Computer Science,
August 15, 2014, Volume 10, Issue 3
doi: 10.2168/LMCS-10(3:4)2014

Part II

Residual Nominal Automata
(2020)
Joshua Moerman and Matteo Sammartino

31st International Conference on
Concurrency Theory (CONCUR 2020)
doi: 10.4230/LIPIcs.CONCUR.2020.44

http://dx.doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.4230/LIPIcs.CONCUR.2020.44

Part I
Defining nominal automata

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Formal definition

Group Actions

Group Actions (G-Sets)

Orbits

Lemma any G-set is partitioned into orbits in a unique way

Equivariance

Equivariant relation

G-Automata

G-Language

Nominal G-Automata

Finite support

Nominal G-Set

Nominal G-Automata

● Infinite number of states
● Some kind of symmetry
● But finitely many orbits
● Initial and final states equivariant
● Transition function equivariant
● We can represent them finitely
● Same expressiveness as register automata

Nominal G-Automata

Derivative languages

Derivative languages

Derivative languages

Derivative languages

Derivative languages

Derivative languages

Derivative languages

Derivative languages

Derivative languages

What are the orbits

What are the orbits

What are the orbits?

Myhill-Nerode Theorem

Myhill-Nerode Theorem (DFA)

Myhill-Nerode Theorem (G-Automata)

Myhill-Nerode Theorem (Nominal G-Automata)

Myhill-Nerode Theorem (DFA)

Proof (⇒)

Myhill-Nerode Theorem (DFA)

Proof (⇒)

Myhill-Nerode Theorem (DFA)

Proof (⇒)

Myhill-Nerode Theorem (DFA)

Proof (⇒)

Myhill-Nerode Theorem (DFA)

Proof (⇒)

Myhill-Nerode Theorem (DFA)

Proof (⇒)

Myhill-Nerode Theorem (DFA)

Proof (⇒)

Myhill-Nerode Theorem (DFA)

Proof (⇒)

Myhill-Nerode Theorem (DFA)

Proof (⇒)

Myhill-Nerode Theorem (DFA)

Proof (⇐)

We create a syntactic automaton:

Myhill-Nerode Theorem (DFA)

Proof (⇐)

We create a syntactic automaton:

• It is well-defined
• It accepts 𝓛

The other theorems generalize
straightforwardly

● Does the syntactic automaton still work?
● Is everything orbit finite?

Part II
Residual Nominal Automata

Hierarchy

Determination fails

A nondeterministic nominal G-automaton can (in general) not be turned
into a deterministic nominal G-automaton

Exact learning

Constructing an automaton of a unknown language 𝓛

There is an exact learning algorithm L* which uses residual languages

Which nominal languages admit an exact learning algorithm?

Residual

If the language of each state is a
derivative of 𝓛

Non-Guessing

May not store symbols in registers
without explicitly reading them

Nominal G-Automata

¯ = non-guessing

Nominal G-Automata

¯ = non-guessing

Nominal G-Automata

¯ = non-guessing

Join-irreducible derivative languages

Join-irreducible derivative languages

Is this language recognised by a
deterministic nominal G-automaton?

Join-irreducible derivative languages

Is this language recognised by a
deterministic nominal G-automaton?

NO

Join-irreducible derivative languages

Is this language recognised by a
deterministic nominal G-automaton?

NO

There are orbit finite join-irreducible
derivative languages

Join-irreducible derivative languages

Is this language recognised by a
deterministic nominal G-automaton?

NO

There are orbit finite join-irreducible
derivative languages

We can apply the
 Residual Automata Theorem!

Residual Automata Theorem

Nominal G-Automata

¯ = non-guessing

Deterministic

Non-guessing residual

Guessing residual

“Last letter is unique but anchored”

Nondeterministic
non-guessing

Nondeterministic
non-guessing

Summary

• Nominal G-Automata
• Myhill-Nerode Theorem
• Residual Automaton Theorem
• Some languages of each class

Questions?

“What about the learning algorithm?”

• L* for deterministic languages → deterministic nominal languages (vL*)
• Not to non-deterministic nominal automata (they are more expressive!)
• NL* for residual automata → vNL* for nominal residual automata

• It works by constructing an observation table of derivative languages
- which is orbit-finite for the nominal deterministic case
- for residual automata we can find the canonical representation

