Nominal G-Automata

Steven Bronsveld

Supervisor: dr. J.C. Rot

Part I

Automata Theory in Nominal Sets (2012)

Mikołaj Bojańczyk, Bartek Klin and Sławomir Lasota

Logical Methods in Computer Science, August 15, 2014, Volume 10, Issue 3 doi: <u>10.2168/LMCS-10(3:4)2014</u>

Part II

Residual Nominal Automata (2020)

Joshua Moerman and Matteo Sammartino

31st International Conference on Concurrency Theory (CONCUR 2020) doi: <u>10.4230/LIPIcs.CONCUR.2020.44</u>

Defining nominal automata

 $A := \{a, b, c\}$ $\mathcal{L} := \{ xwx \mid x \in A, w \in A^* \}$

 $A := \{a, b, c\}$ $\mathcal{L} := \{ xwx \mid x \in A, w \in A^* \}$

$$A := \{a, b, c\}$$
$$\mathcal{L} := \{ xwx \mid x \in A, w \in A^* \}$$

$$\begin{aligned} A &:= \{a, b, c\} \\ \mathcal{L} &:= \{ xwx \mid x \in A, w \in A^* \} \\ \sigma &:= \begin{cases} a \mapsto b \\ b \mapsto c \\ c \mapsto a \end{cases} \end{aligned}$$

$$A := \{a, b, c\}$$
$$\mathcal{L} := \{ xwx \mid x \in A, w \in A^* \}$$
$$\sigma := \begin{cases} a \mapsto b \\ b \mapsto c \\ c \mapsto a \end{cases}$$

$$\begin{split} A &:= \{a, b, c\} \\ \mathcal{L} &:= \{ xwx \mid x \in A, w \in A^* \\ \sigma &:= \begin{cases} a \mapsto b \\ b \mapsto c \\ c \mapsto a \end{cases} \end{split}$$

 $A := \{a, b, c\}$ $\mathcal{L} := \{ xwx \mid x \in A, w \in A^* \}$

$$\mathbb{A} := \{a_0, a_1, a_2, \dots\}$$
$$\mathcal{L} := \{xwx \mid x \in \mathbb{A}, w \in \mathbb{A}^*\}$$

$$\mathbb{A} := \{a_0, a_1, a_2, \dots\}$$
$$\mathcal{L} := \{xwx \mid x \in \mathbb{A}, w \in \mathbb{A}^*\}$$

$$\mathbb{A} := \{a_0, a_1, a_2, \dots\}$$
$$\mathcal{L} := \{xwx \mid x \in \mathbb{A}, w \in \mathbb{A}^* \}$$

$$\mathbb{A} := \{a_0, a_1, a_2, \dots\}$$
$$\mathcal{L} := \{xwx \mid x \in \mathbb{A}, w \in \mathbb{A}^*\}$$

Formal definition

Group Actions

- Group G, set X
 - $\bullet:G\times X\to X$

$$e \bullet x = x \qquad \forall x \in X$$
$$(\pi \cdot \sigma) \bullet x = \pi \bullet (\sigma \bullet x) \qquad \forall x \in X \ \forall \pi, \sigma \in G$$

Group Actions (G-Sets)

$$G := S(\mathbb{A}), \quad X := \mathbb{A} = \{a_0, a_1, a_2, \dots\}$$

• : $S(\mathbb{A}) \times \mathbb{A} \to \mathbb{A}$

$$e \bullet x = x \qquad \qquad \forall x \in \mathbb{A}$$
$$(\pi \cdot \sigma) \bullet x = \pi \bullet (\sigma \bullet x) \qquad \qquad \forall x \in \mathbb{A} \ \forall \pi, \sigma \in S(\mathbb{A})$$

Orbits

Group G, G-Set X, $x \in X$ $G \bullet x := \{ \sigma \bullet x \mid \sigma \in G \}$

Lemma any G-set is partitioned into orbits in a unique way

Equivariance

A set $A \subseteq X$ is equivariant if for all $\sigma \in G$ we have $\sigma \bullet A := \{ \sigma \bullet x \mid x \in A \} = A.$

Equivariant relation

A relation $R \subseteq X \times X$ is equivariant if for all $\sigma \in G$ we have $xRy \iff (\sigma \bullet x)R(\sigma \bullet y)$

G-Automata

 $(Q, \mathbb{A}, I, F, \delta)$ \mathbb{A}, Q are orbit finite G-Sets I, F, δ are equivariant

G-Language $\mathcal{L} \subseteq \mathbb{A}^*$ is equivariant

Nominal G-Automata

Finite support

 $A \subseteq \mathbb{A} \text{ supports } x \in X \text{ if} \\ \sigma \mid_A = Id_A \implies \sigma \bullet x = x \qquad \forall \sigma \in S(\mathbb{A})$

Nominal G-Set

Every element $x \in X$ has a finite support supp(x)

Nominal G-Automata

Q and \mathbbm{A} are nominal G-Sets.

Nominal G-Automata

- Infinite number of states
- Some kind of symmetry
- But finitely many orbits
- Initial and final states equivariant
- Transition function equivariant
- We can represent them finitely
- Same expressiveness as register automata

$$u^{-1}\mathcal{L} := \{ w \mid uw \in \mathcal{L} \}$$

$$u^{-1}\mathcal{L} := \{ w \mid uw \in \mathcal{L} \}$$
$$\epsilon^{-1}\mathcal{L} = \mathcal{L}$$

$$u^{-1}\mathcal{L} := \{ w \mid uw \in \mathcal{L} \}$$
$$\epsilon^{-1}\mathcal{L} = \mathcal{L}$$

$$\mathbb{A} := \{a, b, c, \dots\}$$
$$\mathcal{L} := \{xwx \mid x \in \mathbb{A}, w \in \mathbb{A}^*\}$$

$$u^{-1}\mathcal{L} := \{ w \mid uw \in \mathcal{L} \}$$
$$\epsilon^{-1}\mathcal{L} = \mathcal{L}$$
$$a^{-1}\mathcal{L} = \{ w \mid aw \in \mathcal{L} \}$$

$$\mathbb{A} := \{a, b, c, \dots\}$$
$$\mathcal{L} := \{ xwx \mid x \in \mathbb{A}, w \in \mathbb{A}^* \}$$

$$u^{-1}\mathcal{L} := \{ w \mid uw \in \mathcal{L} \}$$

$$\epsilon^{-1}\mathcal{L} = \mathcal{L}$$

$$a^{-1}\mathcal{L} = \{ w \mid aw \in \mathcal{L} \}$$

$$= \{a, aa, ba, ca, \dots \}$$

$$\mathbb{A} := \{a, b, c, \dots\}$$
$$\mathcal{L} := \{ xwx \mid x \in \mathbb{A}, w \in \mathbb{A}^* \}$$

$$u^{-1}\mathcal{L} := \{ w \mid uw \in \mathcal{L} \}$$

$$\epsilon^{-1}\mathcal{L} = \mathcal{L}$$

$$a^{-1}\mathcal{L} = \{ w \mid aw \in \mathcal{L} \}$$

$$= \{a, aa, ba, ca, \dots \}$$

$$aa)^{-1}\mathcal{L} = \{\epsilon, a, ba, \dots \}$$

$$\mathbb{A} := \{a, b, c, \dots\}$$
$$\mathcal{L} := \{ xwx \mid x \in \mathbb{A}, w \in \mathbb{A}^* \}$$

$$u^{-1}\mathcal{L} := \{ w \mid uw \in \mathcal{L} \}$$

$$\epsilon^{-1}\mathcal{L} = \mathcal{L}$$

$$a^{-1}\mathcal{L} = \{ w \mid aw \in \mathcal{L} \}$$

$$= \{a, aa, ba, ca, \dots \}$$

$$aa)^{-1}\mathcal{L} = \{\epsilon, a, ba, \dots \}$$

$$\mathbb{A} := \{a, b, c, \dots\}$$
$$\mathcal{L} := \{xwx \mid x \in \mathbb{A}, w \in \mathbb{A}^*\}$$

 $Der(\mathcal{L}) := \{ x^{-1}\mathcal{L} \mid x \in \mathbb{A}^* \}$

$$u^{-1}\mathcal{L} := \{ w \mid uw \in \mathcal{L} \}$$

$$\epsilon^{-1}\mathcal{L} = \mathcal{L}$$

$$a^{-1}\mathcal{L} = \{ w \mid aw \in \mathcal{L} \}$$

$$= \{a, aa, ba, ca, \dots \}$$

$$aa)^{-1}\mathcal{L} = \{\epsilon, a, ba, \dots \}$$

$$\mathbb{A} := \{a, b, c, \dots\}$$
$$\mathcal{L} := \{xwx \mid x \in \mathbb{A}, w \in \mathbb{A}^*\}$$

$$Der(\mathcal{L}) := \{ x^{-1}\mathcal{L} \mid x \in \mathbb{A}^* \}$$
$$= \{ \mathcal{L}, x^{-1}\mathcal{L}, (xx)^{-1}\mathcal{L} \mid x \in \mathbb{A} \}$$

What are the orbits

$$Der(\mathcal{L}) := \{ x^{-1}\mathcal{L} \mid x \in \mathbb{A} \}$$
$$= \{ \mathcal{L}, x^{-1}\mathcal{L}, (xx)^{-1}\mathcal{L} \mid x \in \mathbb{A} \}$$

What are the orbits

$$Der(\mathcal{L}) := \{ x^{-1}\mathcal{L} \mid x \in \mathbb{A} \}$$
$$= \{ \mathcal{L}, x^{-1}\mathcal{L}, (xx)^{-1}\mathcal{L} \mid x \in \mathbb{A} \}$$

$$\sigma := \begin{cases} a \mapsto b \\ \dots \\ \sigma \bullet (aa)^{-1} \mathcal{L} = (bb)^{-1} \mathcal{L} \end{cases}$$

What are the orbits?

$$Der(\mathcal{L}) := \{ x^{-1}\mathcal{L} \mid x \in \mathbb{A} \}$$
$$= \{ \mathcal{L}, x^{-1}\mathcal{L}, (xx)^{-1}\mathcal{L} \mid x \in \mathbb{A} \}$$
$$\sigma \bullet (a)$$

$$\sigma := \begin{cases} a \mapsto b \\ \dots \\ \sigma \bullet (aa)^{-1} \mathcal{L} = (bb)^{-1} \mathcal{L} \end{cases}$$

Myhill-Nerode Theorem

Finite alphabet ALanguage $\mathcal{L} \subseteq A^*$

 \mathcal{L} is recognized by a deterministic finite automata $\iff Der(\mathcal{L})$ is finite

Myhill-Nerode Theorem (G-Automata)

Orbit finite G-Set \mathbb{A} **G-**Language $\mathcal{L} \subseteq \mathbb{A}^*$

 \mathcal{L} is recognized by a **deterministic G-Automaton** \iff $Der(\mathcal{L})$ is **orbit** finite

Myhill-Nerode Theorem (Nominal G-Automata)

Orbit finite nominal G-Set \mathbb{A} **G-**Language $\mathcal{L} \subseteq \mathbb{A}^*$

 \mathcal{L} is recognized by a **deterministic nominal G-Automaton** \iff $Der(\mathcal{L})$ is **orbit** finite

Proof (⇒)

 ${\mathcal L}$ is recognized by a deterministic finite automata

$$\iff | Der(\mathcal{L}) | \text{ is finite}$$

Automaton $D = (Q, A, \{q_0\}, F, \delta)$ such that $\mathcal{L}(D) = \mathcal{L}$

Proof (⇒)

 ${\mathcal L}$ is recognized by a deterministic finite automata

 $\iff | Der(\mathcal{L}) | \text{ is finite}$

Automaton $D = (Q, A, \{q_0\}, F, \delta)$ such that $\mathcal{L}(D) = \mathcal{L}$ $\mathcal{L}(D, q) = \{ w \in A^* \mid \delta(q, w) \in F \}$ $\mathcal{L}(D, q_0) = \mathcal{L}(D)$

Proof (⇒)

Automaton $D = (Q, A, \{q_0\}, F, \delta)$ such that $\mathcal{L}(D) = \mathcal{L}$ $C := \{ \mathcal{L}(D, q) \mid q \in Q \}$

 ${\mathcal L}$ is recognized by a deterministic finite automata

$$\iff | Der(\mathcal{L}) | \text{ is finite}$$

Proof (⇒)

Automaton $D = (Q, A, \{q_0\}, F, \delta)$ such that $\mathcal{L}(D) = \mathcal{L}$ $C := \{ \mathcal{L}(D, q) \mid q \in Q \}$ $\mid C \mid \leq \mid Q \mid < \infty$

 ${\mathcal L}$ is recognized by a deterministic finite automata

$$\iff | Der(\mathcal{L}) | \text{ is finite}$$

Proof (⇒)

Automaton $D = (Q, A, \{q_0\}, F, \delta)$ such that $\mathcal{L}(D) = \mathcal{L}$ $C := \{ \mathcal{L}(D, q) \mid q \in Q \}$ $\mid C \mid \leq \mid Q \mid < \infty$ **To prove:** $Der(\mathcal{L}) \subseteq C$

 ${\mathcal L}$ is recognized by a deterministic finite automata

$$\iff | Der(\mathcal{L}) | \text{ is finite}$$

Proof (⇒)

Automaton $D = (Q, A, \{q_0\}, F, \delta)$ such that $\mathcal{L}(D) = \mathcal{L}$ $C := \{ \mathcal{L}(D, q) \mid q \in Q \}$ $\mid C \mid \leq \mid Q \mid < \infty$ **To prove:** $Der(\mathcal{L}) \subseteq C$ $Der(\mathcal{L}) = \{ w^{-1}\mathcal{L} \mid w \in A^* \}$

 ${\mathcal L}$ is recognized by a deterministic finite automata

$$\iff | Der(\mathcal{L}) | \text{ is finite}$$

Proof (⇒)

Automaton $D = (Q, A, \{q_0\}, F, \delta)$ such that $\mathcal{L}(D) = \mathcal{L}$ $C := \{ \mathcal{L}(D, q) \mid q \in Q \}$ $\mid C \mid \leq \mid Q \mid < \infty$ **To prove:** $Der(\mathcal{L}) \subseteq C$ $Der(\mathcal{L}) = \{ w^{-1}\mathcal{L} \mid w \in A^* \}$ $= \{ w^{-1}\mathcal{L}(D, q_0) \mid w \in A^* \}$

 ${\mathcal L}$ is recognized by a deterministic finite automata

$$\iff | Der(\mathcal{L}) | \text{ is finite}$$

Proof (⇒)

Automaton $D = (Q, A, \{q_0\}, F, \delta)$ such that $\mathcal{L}(D) = \mathcal{L}$ $C := \{ \mathcal{L}(D, q) \mid q \in Q \}$ $\mid C \mid \leq \mid Q \mid < \infty$ **To prove:** $Der(\mathcal{L}) \subseteq C$ $Der(\mathcal{L}) = \{ w^{-1}\mathcal{L} \mid w \in A^* \}$ $= \{ w^{-1}\mathcal{L}(D, q_0) \mid w \in A^* \}$ $= \{ \mathcal{L}(D, \delta(q_0, w)) \mid w \in A^* \}$

 ${\mathcal L}$ is recognized by a deterministic finite automata

$$\iff | Der(\mathcal{L}) | \text{ is finite}$$

Proof (⇒)

Automaton
$$D = (Q, A, \{q_0\}, F, \delta)$$
 such that $\mathcal{L}(D) = \mathcal{L}$
 $C := \{ \mathcal{L}(D, q) \mid q \in Q \}$
 $\mid C \mid \leq \mid Q \mid < \infty$
To prove: $Der(\mathcal{L}) \subseteq C$
 $Der(\mathcal{L}) = \{ w^{-1}\mathcal{L} \mid w \in A^* \}$
 $= \{ w^{-1}\mathcal{L}(D, q_0) \mid w \in A^* \}$
 $= \{ \mathcal{L}(D, \delta(q_0, w)) \mid w \in A^* \}$
 $\subseteq \{ \mathcal{L}(D, q') \mid q' \in Q \} = C$

 ${\mathcal L}$ is recognized by a deterministic finite automata

$$\iff | Der(\mathcal{L}) | \text{ is finite}$$

Proof (⇐)

We create a **syntactic automaton**:

 $Q := Der(\mathcal{L})$ $I := \epsilon^{-1}\mathcal{L}$ $F := \{ p^{-1}\mathcal{L} \mid \epsilon \in p^{-1}\mathcal{L} \}$ $\delta(p^{-1}\mathcal{L}, t) := (pt)^{-1}\mathcal{L}$

 ${\mathcal L}$ is recognized by a deterministic finite automata

$$\iff | Der(\mathcal{L}) | \text{ is finite}$$

Proof (⇐)

We create a syntactic automaton:

- It is well-defined
- It accepts *L*

 ${\mathcal L}$ is recognized by a deterministic finite automata

 $\iff | Der(\mathcal{L}) | \text{ is finite}$

 $Q := Der(\mathcal{L})$ $I := \epsilon^{-1}\mathcal{L}$ $F := \{ p^{-1}\mathcal{L} \mid \epsilon \in p^{-1}\mathcal{L} \}$ $\delta(p^{-1}\mathcal{L}, t) := (pt)^{-1}\mathcal{L}$

The other theorems generalize straightforwardly

- Does the syntactic automaton still work?
- Is everything orbit finite?

Residual Nominal Automata Hierarchy

Determination fails

A **nondeterministic** nominal G-automaton can (in general) not be turned into a **deterministic** nominal G-automaton

Constructing an automaton of a unknown language \mathcal{L}

There is an exact learning algorithm L* which uses residual languages

Which nominal languages admit an exact learning algorithm?

Residual

If the language of each state is a derivative of $\boldsymbol{\mathcal{L}}$

Non-Guessing

May **not** store symbols in registers without explicitly reading them

$$\mathcal{L}(A,q) = w^{-1}\mathcal{L}$$
 for some $w \in \mathbb{A}^*$

if $supp(q_0) = \emptyset$ and $supp(q') \subseteq supp(q) \cup supp(a)$ for each $(q, a, q') \in \delta$

$$\mathcal{L}_{ng,r} \coloneqq \{uavaw \mid u, v, w \in \mathbb{A}^*, a \in \mathbb{A}\}.$$

$$\mathcal{L}_{\mathrm{ng,r}} \coloneqq \{uavaw \mid u, v, w \in \mathbb{A}^*, a \in \mathbb{A}\}.$$

Is this language recognised by a deterministic nominal G-automaton?

$$\mathcal{L}_{\mathrm{ng,r}} \coloneqq \{uavaw \mid u, v, w \in \mathbb{A}^*, a \in \mathbb{A}\}.$$

Is this language recognised by a deterministic nominal G-automaton?

$$\mathcal{L}_{\mathrm{ng,r}} \coloneqq \{uavaw \mid u, v, w \in \mathbb{A}^*, a \in \mathbb{A}\}.$$

Is this language recognised by a deterministic nominal G-automaton?

There are orbit finite join-irreducible derivative languages

$$\mathcal{L}_{\mathrm{ng,r}} \coloneqq \{uavaw \mid u, v, w \in \mathbb{A}^*, a \in \mathbb{A}\}.$$

Is this language recognised by a deterministic nominal G-automaton?

There are orbit finite join-irreducible derivative languages

We can apply the Residual Automata Theorem!

Residual Automata Theorem

Orbit finite nominal G-Set \mathbb{A} **G-**Language $\mathcal{L} \subseteq \mathbb{A}^*$

 \mathcal{L} is recognized by a **residual nominal G-Automaton** \iff $\mathrm{JI}(Der(\mathcal{L}))$ is **orbit** finite and generates $Der(\mathcal{L})$

Deterministic

$$\mathcal{L}_{\mathrm{d}} \coloneqq \{awa \mid a \in \mathbb{A}, w \in \mathbb{A}^*\}$$

Summary

- Nominal G-Automata
- Myhill-Nerode Theorem
- Residual Automaton Theorem
- Some languages of each class

Questions?

"What about the learning algorithm?"

- L* for deterministic languages \rightarrow deterministic nominal languages (vL*)
- Not to non-deterministic nominal automata (they are more expressive!)
- NL* for residual automata \rightarrow vNL* for nominal residual automata
- It works by constructing an observation table of derivative languages
 - which is orbit-finite for the nominal deterministic case
 - for residual automata we can find the canonical representation

Modified νNL^* learner

```
1 S, E = \{\epsilon\}
 2
     repeat
           while (S, E) is not residually-closed or not residually-consistent
 3
           if (S, E) is not residually-closed
 4
                  find s \in S, a \in A such that row(sa) \in \mathsf{JI}(\operatorname{Rows}(S, E)) \setminus \operatorname{Rows}^{\top}(S, E)
 5
                  k = length of the word sa
 6
                  S = S \cup \Sigma^{\leq k}
 7
 8
           if (S, E) is not residually-consistent
 9
                  find s_1, s_2 \in S, a \in A, and e \in E such that row(s_1) \sqsubseteq row(s_2) and
                        \mathcal{L}(s_1 a e) = 1, \, \mathcal{L}(s_2 a e) = 0
                  E = E \cup \mathsf{orb}(ae)
10
           Make the conjecture N(S, E)
11
12
           if the Teacher replies no, with a counter-example t
                  E = E \cup \{ \operatorname{orb}(t_0) \mid t_0 \text{ is a suffix of } t \}
13
14
     until the Teacher replies yes to the conjecture N(S, E).
     return N(S, E)
15
```

