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Part I
Defining nominal automata
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Formal definition



Group Actions



Group Actions (G-Sets)



Orbits

Lemma any G-set is partitioned into orbits in a unique way









Equivariance

Equivariant relation



G-Automata

G-Language



Nominal G-Automata



Finite support

Nominal G-Set

Nominal G-Automata



● Infinite number of states
● Some kind of symmetry
● But finitely many orbits
● Initial and final states equivariant
● Transition function equivariant
● We can represent them finitely
● Same expressiveness as register automata

Nominal G-Automata



Derivative languages
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Derivative languages



What are the orbits



What are the orbits



What are the orbits?



Myhill-Nerode Theorem



Myhill-Nerode Theorem (DFA)



Myhill-Nerode Theorem (G-Automata)



Myhill-Nerode Theorem (Nominal G-Automata)



Myhill-Nerode Theorem (DFA)

Proof (⇒)
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Myhill-Nerode Theorem (DFA)

Proof (⇐)

We create a syntactic automaton:



Myhill-Nerode Theorem (DFA)

Proof (⇐)

We create a syntactic automaton:

• It is well-defined
• It accepts 𝓛



The  other theorems generalize 
straightforwardly

● Does the syntactic automaton still work?
● Is everything orbit finite?



Part II
Residual Nominal Automata

Hierarchy



Determination fails

A nondeterministic nominal G-automaton can (in general) not be turned 
into a deterministic nominal G-automaton



Exact learning

Constructing an automaton of a unknown language 𝓛

There is an exact learning algorithm L* which uses residual languages

Which nominal languages admit an exact learning algorithm?
 



Residual

If the language of each state is a 
derivative of 𝓛

Non-Guessing

May not store symbols in registers 
without explicitly reading them



Nominal G-Automata

¯  = non-guessing



Nominal G-Automata

¯  = non-guessing



Nominal G-Automata

¯  = non-guessing



Join-irreducible derivative languages



Join-irreducible derivative languages

Is this language recognised by a 
deterministic nominal G-automaton?



Join-irreducible derivative languages

Is this language recognised by a 
deterministic nominal G-automaton?

NO



Join-irreducible derivative languages

Is this language recognised by a 
deterministic nominal G-automaton?

NO

There are orbit finite join-irreducible 
derivative languages



Join-irreducible derivative languages

Is this language recognised by a 
deterministic nominal G-automaton?

NO

There are orbit finite join-irreducible 
derivative languages

We can apply the 
 Residual Automata Theorem!



Residual Automata Theorem



Nominal G-Automata

¯  = non-guessing



Deterministic



Non-guessing residual



Guessing residual

“Last letter is unique but anchored”



Nondeterministic
non-guessing



Nondeterministic
non-guessing



Summary

• Nominal G-Automata
• Myhill-Nerode Theorem
• Residual Automaton Theorem
• Some languages of each class



Questions?





“What about the learning algorithm?”

• L* for deterministic languages → deterministic nominal languages (vL* ) 
• Not to non-deterministic nominal automata (they are more expressive!)
• NL* for residual automata  → vNL* for nominal residual automata

• It works by constructing an observation table of derivative languages
- which is orbit-finite for the nominal deterministic case
- for residual automata we can find the canonical representation




