
Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Higher-order Rewriting

Suzan Erven

s4534999

Radboud University Nijmegen

MFoCS Seminar
January 24, 2022

Suzan Erven MFoCS Seminar Higher-order Rewriting 1 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Introduction

Higher-order critical pairs (’91)
Tobias Nipkow

• Extends first-order rewrite
systems to higher-order
(HRS)

• Critical pairs & confluence

Outermost-Fair Rewriting (’97)
Femke van Raamsdonk

• Outermost-fair rewriting is
normalising for certain
first-order systems

• Investigates how this can
work on an HRS

Suzan Erven MFoCS Seminar Higher-order Rewriting 2 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Introduction

Higher-order critical pairs (’91)
Tobias Nipkow

• Extends first-order rewrite
systems to higher-order
(HRS)

• Critical pairs & confluence

Outermost-Fair Rewriting (’97)
Femke van Raamsdonk

• Outermost-fair rewriting is
normalising for certain
first-order systems

• Investigates how this can
work on an HRS

Suzan Erven MFoCS Seminar Higher-order Rewriting 2 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Introduction

Higher-order critical pairs (’91)
Tobias Nipkow

• Extends first-order rewrite
systems to higher-order
(HRS)

• Critical pairs & confluence

Outermost-Fair Rewriting (’97)
Femke van Raamsdonk

• Outermost-fair rewriting is
normalising for certain
first-order systems

• Investigates how this can
work on an HRS

Suzan Erven MFoCS Seminar Higher-order Rewriting 2 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Introduction

Higher-order critical pairs (’91)
Tobias Nipkow

• Extends first-order rewrite
systems to higher-order
(HRS)

• Critical pairs & confluence

Outermost-Fair Rewriting (’97)
Femke van Raamsdonk

• Outermost-fair rewriting is
normalising for certain
first-order systems

• Investigates how this can
work on an HRS

Suzan Erven MFoCS Seminar Higher-order Rewriting 2 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Introduction

Higher-order critical pairs (’91)
Tobias Nipkow

• Extends first-order rewrite
systems to higher-order
(HRS)

• Critical pairs & confluence

Outermost-Fair Rewriting (’97)
Femke van Raamsdonk

• Outermost-fair rewriting is
normalising for certain
first-order systems

• Investigates how this can
work on an HRS

Suzan Erven MFoCS Seminar Higher-order Rewriting 2 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Introduction

Higher-order critical pairs (’91)
Tobias Nipkow

• Extends first-order rewrite
systems to higher-order
(HRS)

• Critical pairs & confluence

Outermost-Fair Rewriting (’97)
Femke van Raamsdonk

• Outermost-fair rewriting is
normalising for certain
first-order systems

• Investigates how this can
work on an HRS

Suzan Erven MFoCS Seminar Higher-order Rewriting 2 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Outline

First-order rewriting recap

Extension to higher-order

Confluence

Normalisation

Suzan Erven MFoCS Seminar Higher-order Rewriting 3 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Outline

First-order rewriting recap

Extension to higher-order

Confluence

Normalisation

Suzan Erven MFoCS Seminar Higher-order Rewriting 4 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

First-order rewriting recap

Example: addition on natural numbers.

(1) : +(x , 0) → x

(2) : +(x , s(y)) → s(+(x , y))

where +, s, 0 functions with arity 1, 2, 0 respectively, and x , y
variables.

Rewriting using these rules allows us to prove statements like
1 + 2 = 3.

Suzan Erven MFoCS Seminar Higher-order Rewriting 5 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

First-order rewriting recap

Example: addition on natural numbers.

(1) : +(x , 0) → x

(2) : +(x , s(y)) → s(+(x , y))

where +, s, 0 functions with arity 1, 2, 0 respectively, and x , y
variables.

Rewriting using these rules allows us to prove statements like
1 + 2 = 3.

Suzan Erven MFoCS Seminar Higher-order Rewriting 5 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Some properties

• (Local) confluence

• (Strong) normalisation

• Termination (= strong normalisation) is undecidable

• If terminating, confluence is decidable

Suzan Erven MFoCS Seminar Higher-order Rewriting 6 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Higher-order?

• First-order accepts only inputs of base type!

• How do we make an extension that makes sense?

Suzan Erven MFoCS Seminar Higher-order Rewriting 7 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Outline

First-order rewriting recap

Extension to higher-order

Confluence

Normalisation

Suzan Erven MFoCS Seminar Higher-order Rewriting 8 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Higher-Order Rewrite System (HRS)

A rewrite rule is l → r such that

• l is a pattern but not η-equivalent to a free variable

• l and r are of the same type

• and all free variables in r also occur in l

An HRS is a finite set of rewrite rules.

Suzan Erven MFoCS Seminar Higher-order Rewriting 9 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Patterns (1/2)

Left-hand side of a rule should be a pattern

Definition: Pattern

A term t in β-normal form is called a (higher-order) pattern if
every free occurrence of a variable F is in a subterm F (un) of t
such that un is η-equivalent to a list of distinct bound variables.

Examples

Some patterns are λx .c(x), X , λx .F (λz .x(z)), λx , y .F (y , x).
Some non-patterns are F (c), λx .F (x , x), λx .F (F (x)).

But why?

Suzan Erven MFoCS Seminar Higher-order Rewriting 10 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Patterns (1/2)

Left-hand side of a rule should be a pattern

Definition: Pattern

A term t in β-normal form is called a (higher-order) pattern if
every free occurrence of a variable F is in a subterm F (un) of t
such that un is η-equivalent to a list of distinct bound variables.

Examples

Some patterns are λx .c(x), X , λx .F (λz .x(z)), λx , y .F (y , x).
Some non-patterns are F (c), λx .F (x , x), λx .F (F (x)).

But why?

Suzan Erven MFoCS Seminar Higher-order Rewriting 10 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Patterns (1/2)

Left-hand side of a rule should be a pattern

Definition: Pattern

A term t in β-normal form is called a (higher-order) pattern if
every free occurrence of a variable F is in a subterm F (un) of t
such that un is η-equivalent to a list of distinct bound variables.

Examples

Some patterns are λx .c(x), X , λx .F (λz .x(z)), λx , y .F (y , x).
Some non-patterns are F (c), λx .F (x , x), λx .F (F (x)).

But why?

Suzan Erven MFoCS Seminar Higher-order Rewriting 10 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Patterns (1/2)

Left-hand side of a rule should be a pattern

Definition: Pattern

A term t in β-normal form is called a (higher-order) pattern if
every free occurrence of a variable F is in a subterm F (un) of t
such that un is η-equivalent to a list of distinct bound variables.

Examples

Some patterns are λx .c(x), X , λx .F (λz .x(z)), λx , y .F (y , x).
Some non-patterns are F (c), λx .F (x , x), λx .F (F (x)).

But why?

Suzan Erven MFoCS Seminar Higher-order Rewriting 10 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Patterns (2/2)

Theorem

It is decidable whether two patterns are unifiable; if they are
unifiable, a most general unifier can be computed.

• Rewriting is computable
• Critical pairs are computable

Also
• Restriction to patterns ensures no free variables are spawned
during rewriting

Consider the rule

f (c(F (X ),F (a))) → f (X ).

(note: lhs not a pattern). Rewriting the term f (c(a, a)) with this
rule to f (X ) spawns a new variable.

Suzan Erven MFoCS Seminar Higher-order Rewriting 11 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Patterns (2/2)

Theorem

It is decidable whether two patterns are unifiable; if they are
unifiable, a most general unifier can be computed.

• Rewriting is computable

• Critical pairs are computable

Also
• Restriction to patterns ensures no free variables are spawned
during rewriting

Consider the rule

f (c(F (X ),F (a))) → f (X ).

(note: lhs not a pattern). Rewriting the term f (c(a, a)) with this
rule to f (X ) spawns a new variable.

Suzan Erven MFoCS Seminar Higher-order Rewriting 11 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Patterns (2/2)

Theorem

It is decidable whether two patterns are unifiable; if they are
unifiable, a most general unifier can be computed.

• Rewriting is computable
• Critical pairs are computable

Also
• Restriction to patterns ensures no free variables are spawned
during rewriting

Consider the rule

f (c(F (X ),F (a))) → f (X ).

(note: lhs not a pattern). Rewriting the term f (c(a, a)) with this
rule to f (X ) spawns a new variable.

Suzan Erven MFoCS Seminar Higher-order Rewriting 11 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Patterns (2/2)

Theorem

It is decidable whether two patterns are unifiable; if they are
unifiable, a most general unifier can be computed.

• Rewriting is computable
• Critical pairs are computable

Also
• Restriction to patterns ensures no free variables are spawned
during rewriting

Consider the rule

f (c(F (X ),F (a))) → f (X ).

(note: lhs not a pattern). Rewriting the term f (c(a, a)) with this
rule to f (X ) spawns a new variable.

Suzan Erven MFoCS Seminar Higher-order Rewriting 11 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Outline

First-order rewriting recap

Extension to higher-order

Confluence

Normalisation

Suzan Erven MFoCS Seminar Higher-order Rewriting 12 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Critical pairs in first-order

Consider (first-order) rules

(1) : (x × y)× z → x × (y × z)

(2) : i(x × y) → i(y)× i(x)

Unifying gives terms ((x × y)× z)× v and i((x × y)× z).

Reducing gives critical pairs, both of which converge. So, the
system is (at least) locally confluent.

Suzan Erven MFoCS Seminar Higher-order Rewriting 13 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Critical pairs in first-order

Consider (first-order) rules

(1) : (x × y)× z → x × (y × z)

(2) : i(x × y) → i(y)× i(x)

Unifying gives terms ((x × y)× z)× v and i((x × y)× z).

Reducing gives critical pairs, both of which converge. So, the
system is (at least) locally confluent.

Suzan Erven MFoCS Seminar Higher-order Rewriting 13 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Critical pairs in first-order

Consider (first-order) rules

(1) : (x × y)× z → x × (y × z)

(2) : i(x × y) → i(y)× i(x)

Unifying gives terms ((x × y)× z)× v and i((x × y)× z).

Reducing gives critical pairs, both of which converge. So, the
system is (at least) locally confluent.

Suzan Erven MFoCS Seminar Higher-order Rewriting 13 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Critical pairs in higher-order

• Idea is the same

• Problem: taking a subterm can free bound variables

• Solution: Remember which were freed, and bind again before
determining the mgu

Critical Pair Lemma

An HRS R where all rules are of base type is locally confluent if
and only if for each critical pair u1 = u2 in R, u1 and u2 have a
common reduct.

(And R terminating → decision procedure for confluence)

Suzan Erven MFoCS Seminar Higher-order Rewriting 14 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Critical pairs in higher-order

• Idea is the same

• Problem: taking a subterm can free bound variables

• Solution: Remember which were freed, and bind again before
determining the mgu

Critical Pair Lemma

An HRS R where all rules are of base type is locally confluent if
and only if for each critical pair u1 = u2 in R, u1 and u2 have a
common reduct.

(And R terminating → decision procedure for confluence)

Suzan Erven MFoCS Seminar Higher-order Rewriting 14 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Critical pairs in higher-order

• Idea is the same

• Problem: taking a subterm can free bound variables

• Solution: Remember which were freed, and bind again before
determining the mgu

Critical Pair Lemma

An HRS R where all rules are of base type is locally confluent if
and only if for each critical pair u1 = u2 in R, u1 and u2 have a
common reduct.

(And R terminating → decision procedure for confluence)

Suzan Erven MFoCS Seminar Higher-order Rewriting 14 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Critical pairs in higher-order

• Idea is the same

• Problem: taking a subterm can free bound variables

• Solution: Remember which were freed, and bind again before
determining the mgu

Critical Pair Lemma

An HRS R where all rules are of base type is locally confluent if
and only if for each critical pair u1 = u2 in R, u1 and u2 have a
common reduct.

(And R terminating → decision procedure for confluence)

Suzan Erven MFoCS Seminar Higher-order Rewriting 14 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Outline

First-order rewriting recap

Extension to higher-order

Confluence

Normalisation

Suzan Erven MFoCS Seminar Higher-order Rewriting 15 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Normalisation

• Termination undecidable

• Strategy (̸= always succeed) is normalising if it yields a
normal form for any term that has one

• Steal from first-order (...again)

Definition: Outermost-fair rewriting

A rewrite sequence is outermost-fair if every outermost redex is
eventually eliminated. I.e. if either it ends in nf, or it’s impossible
to trace infinitely long an outermost redex occurrence.

Suzan Erven MFoCS Seminar Higher-order Rewriting 16 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Normalisation

• Termination undecidable

• Strategy

(̸= always succeed) is normalising if it yields a
normal form for any term that has one

• Steal from first-order (...again)

Definition: Outermost-fair rewriting

A rewrite sequence is outermost-fair if every outermost redex is
eventually eliminated. I.e. if either it ends in nf, or it’s impossible
to trace infinitely long an outermost redex occurrence.

Suzan Erven MFoCS Seminar Higher-order Rewriting 16 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Normalisation

• Termination undecidable

• Strategy (̸= always succeed)

is normalising if it yields a
normal form for any term that has one

• Steal from first-order (...again)

Definition: Outermost-fair rewriting

A rewrite sequence is outermost-fair if every outermost redex is
eventually eliminated. I.e. if either it ends in nf, or it’s impossible
to trace infinitely long an outermost redex occurrence.

Suzan Erven MFoCS Seminar Higher-order Rewriting 16 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Normalisation

• Termination undecidable

• Strategy (̸= always succeed) is normalising if it yields a
normal form for any term that has one

• Steal from first-order (...again)

Definition: Outermost-fair rewriting

A rewrite sequence is outermost-fair if every outermost redex is
eventually eliminated. I.e. if either it ends in nf, or it’s impossible
to trace infinitely long an outermost redex occurrence.

Suzan Erven MFoCS Seminar Higher-order Rewriting 16 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Normalisation

• Termination undecidable

• Strategy (̸= always succeed) is normalising if it yields a
normal form for any term that has one

• Steal from first-order (...again)

Definition: Outermost-fair rewriting

A rewrite sequence is outermost-fair if every outermost redex is
eventually eliminated. I.e. if either it ends in nf, or it’s impossible
to trace infinitely long an outermost redex occurrence.

Suzan Erven MFoCS Seminar Higher-order Rewriting 16 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Normalisation

• Termination undecidable

• Strategy (̸= always succeed) is normalising if it yields a
normal form for any term that has one

• Steal from first-order (...again)

Definition: Outermost-fair rewriting

A rewrite sequence is outermost-fair if every outermost redex is
eventually eliminated. I.e. if either it ends in nf, or it’s impossible
to trace infinitely long an outermost redex occurrence.

Suzan Erven MFoCS Seminar Higher-order Rewriting 16 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Outermost reduction

Consider HRS

(1) : fax → x .a

(2) : fxa → x .a

(3) : gx → hxx

Term g(faa) has one outermost redex occurrence, which we apply
(3) on.
Term faa has two: apply either (1) or (2).

Suzan Erven MFoCS Seminar Higher-order Rewriting 17 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Outermost reduction

Consider HRS

(1) : fax → x .a

(2) : fxa → x .a

(3) : gx → hxx

Term g(faa) has one outermost redex occurrence, which we apply
(3) on.

Term faa has two: apply either (1) or (2).

Suzan Erven MFoCS Seminar Higher-order Rewriting 17 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Outermost reduction

Consider HRS

(1) : fax → x .a

(2) : fxa → x .a

(3) : gx → hxx

Term g(faa) has one outermost redex occurrence, which we apply
(3) on.
Term faa has two: apply either (1) or (2).

Suzan Erven MFoCS Seminar Higher-order Rewriting 17 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Infinite outermost chain

Let s : s0 → s1 → s2 → . . . be an infinite rewrite sequence. An
infinite outermost chain in s is an infinite sequence of redex
occurrences wm,mm+1, . . . such that

1 wp is an outermost redex occurrence in sp for every p ≥ m

2 wp is a residual of wp−1 for every p > m

Suzan Erven MFoCS Seminar Higher-order Rewriting 18 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Infinite outermost chain

Let s : s0 → s1 → s2 → . . . be an infinite rewrite sequence. An
infinite outermost chain in s is an infinite sequence of redex
occurrences wm,mm+1, . . . such that

1 wp is an outermost redex occurrence in sp for every p ≥ m

2 wp is a residual of wp−1 for every p > m

Suzan Erven MFoCS Seminar Higher-order Rewriting 18 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Infinite outermost chain

Let s : s0 → s1 → s2 → . . . be an infinite rewrite sequence. An
infinite outermost chain in s is an infinite sequence of redex
occurrences wm,mm+1, . . . such that

1 wp is an outermost redex occurrence in sp for every p ≥ m

2 wp is a residual of wp−1 for every p > m

Suzan Erven MFoCS Seminar Higher-order Rewriting 18 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Requirements: Almost orthogonal

• Left-linear: In each rule, each bounded variable occurs at
most once in the lhs

• Orthogonal: Left-linear and no critical pairs

• Weakly orthogonal: Left-linear and only trivial critical pairs

• Almost orthogonal: Weakly orthogonal + redex occurrence
overlaps only at root of redex occurrences

Suzan Erven MFoCS Seminar Higher-order Rewriting 19 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Requirements: Fully extended

A rewrite rule is fully extended if every occurrence of a bound
variable has (the η-normal form of) every bound variable that it is
in the scope of as an argument.
An HRS is fully extended if all of its rules are.

Suzan Erven MFoCS Seminar Higher-order Rewriting 20 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Normalisation strategy

If a system is

1 Almost orthogonal and

2 Fully extended

then the following holds

Theorem

Let s0 be a weakly normalising term. Every outermost-fair rewrite
sequence starting in s0 eventually ends in a normal form.

Suzan Erven MFoCS Seminar Higher-order Rewriting 21 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Wrap-up

We saw

• What patterns are, and why we want them

• How to use them to extend rewriting systems to higher-order

• How critical pairs work in an HRS

• The consequences w.r.t. confluence

• A normalisation strategy for certain HRSs

• Briefly, what the requirements on an HRS are for the strategy
to be reliable

Suzan Erven MFoCS Seminar Higher-order Rewriting 22 / 23



Introduction
First-order rewriting recap
Extension to higher-order

Confluence
Normalisation

Radboud University Nijmegen

Thank you!

Suzan Erven MFoCS Seminar Higher-order Rewriting 23 / 23


	Introduction
	First-order rewriting recap
	Extension to higher-order
	Confluence
	Normalisation
	

