Radboud University Nijmegen

Higher-order Rewriting

Suzan Erven

s4534999

Radboud University Nijmegen

MFoCS Seminar January 24, 2022

Introduction First-order rewriting recap Confluence Normalisation

Introduction

Higher-order critical pairs ('91) **Tobias Nipkow**

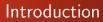
N

Higher-order critical pairs ('91) Tobias Nipkow

 Extends first-order rewrite systems to higher-order (HRS)

Higher-order critical pairs ('91) Tobias Nipkow

- Extends first-order rewrite systems to higher-order (HRS)
- Critical pairs & confluence

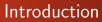


Radboud University Nijmegen

Higher-order critical pairs ('91) Tobias Nipkow

- Extends first-order rewrite systems to higher-order (HRS)
- Critical pairs & confluence

Outermost-Fair Rewriting ('97) Femke van Raamsdonk



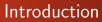
Radboud University Nijmegen

Higher-order critical pairs ('91) Tobias Nipkow

- Extends first-order rewrite systems to higher-order (HRS)
- Critical pairs & confluence

Outermost-Fair Rewriting ('97) Femke van Raamsdonk

 Outermost-fair rewriting is normalising for certain first-order systems



Radboud University Nijmegen

Higher-order critical pairs ('91) Tobias Nipkow

- Extends first-order rewrite systems to higher-order (HRS)
- Critical pairs & confluence

Outermost-Fair Rewriting ('97) Femke van Raamsdonk

- Outermost-fair rewriting is normalising for certain first-order systems
- Investigates how this can work on an HRS

Radboud University Nijmegen

First-order rewriting recap

Extension to higher-order

Confluence

Normalisation

Radboud University Nijmegen

First-order rewriting recap

Extension to higher-order

Confluence

Normalisation

Suzan Erven

Radboud University Nijmegen

First-order rewriting recap

Example: addition on natural numbers.

 $\begin{array}{rcl} (1): & +(x,0) \rightarrow x \\ (2): & +(x,s(y)) \rightarrow s(+(x,y)) \end{array}$

where +, s, 0 functions with arity 1, 2, 0 respectively, and x, y variables.

Radboud University Nijmegen

First-order rewriting recap

Example: addition on natural numbers.

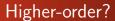
(1):
$$+(x,0) \rightarrow x$$

(2): $+(x,s(y)) \rightarrow s(+(x,y))$

where +, s, 0 functions with arity 1, 2, 0 respectively, and x, y variables.

Rewriting using these rules allows us to prove statements like 1 + 2 = 3.

- (Local) confluence
- (Strong) normalisation
- Termination (= strong normalisation) is undecidable
- If terminating, confluence is decidable



- First-order accepts only inputs of base type!
- How do we make an extension that makes sense?

Radboud University Nijmegen

First-order rewriting recap

Extension to higher-order

Confluence

Normalisation

Suzan Erven

Radboud University Nijmegen

Higher-Order Rewrite System (HRS)

- A rewrite rule is $I \rightarrow r$ such that
 - I is a pattern but not η-equivalent to a free variable
 - I and r are of the same type
 - and all free variables in r also occur in l

An *HRS* is a finite set of rewrite rules.

Radboud University Nijmegen

Left-hand side of a rule should be a pattern

Radboud University Nijmegen

Left-hand side of a rule should be a pattern

Definition: Pattern

A term t in β -normal form is called a *(higher-order) pattern* if every free occurrence of a variable F is in a subterm $F(\overline{u_n})$ of t such that $\overline{u_n}$ is η -equivalent to a list of distinct bound variables.

Radboud University Nijmegen

Left-hand side of a rule should be a pattern

Definition: Pattern

A term t in β -normal form is called a *(higher-order) pattern* if every free occurrence of a variable F is in a subterm $F(\overline{u_n})$ of t such that $\overline{u_n}$ is η -equivalent to a list of distinct bound variables.

Examples

Some patterns are $\lambda x.c(x)$, X, $\lambda x.F(\lambda z.x(z))$, $\lambda x, y.F(y,x)$. Some non-patterns are F(c), $\lambda x.F(x,x)$, $\lambda x.F(F(x))$.

Radboud University Nijmegen

Left-hand side of a rule should be a pattern

Definition: Pattern

A term t in β -normal form is called a *(higher-order) pattern* if every free occurrence of a variable F is in a subterm $F(\overline{u_n})$ of t such that $\overline{u_n}$ is η -equivalent to a list of distinct bound variables.

Examples

Some patterns are $\lambda x.c(x)$, X, $\lambda x.F(\lambda z.x(z))$, $\lambda x, y.F(y,x)$. Some non-patterns are F(c), $\lambda x.F(x,x)$, $\lambda x.F(F(x))$.

But why?

Radboud University Nijmegen

Theorem

It is decidable whether two patterns are unifiable; if they are unifiable, a most general unifier can be computed.

Radboud University Nijmegen

Theorem

It is decidable whether two patterns are unifiable; if they are unifiable, a most general unifier can be computed.

• Rewriting is computable

Radboud University Nijmegen

Theorem

It is decidable whether two patterns are unifiable; if they are unifiable, a most general unifier can be computed.

- Rewriting is computable
- Critical pairs are computable

Also

 Restriction to patterns ensures no free variables are spawned during rewriting

Radboud University Nijmegen

Theorem

It is decidable whether two patterns are unifiable; if they are unifiable, a most general unifier can be computed.

- Rewriting is computable
- Critical pairs are computable

Also

 Restriction to patterns ensures no free variables are spawned during rewriting

Consider the rule

```
f(c(F(X), F(a))) \rightarrow f(X).
```

(note: lhs not a pattern). Rewriting the term f(c(a, a)) with this rule to f(X) spawns a new variable.

Suzan Erven

First-order rewriting recap

Extension to higher-order

Confluence

Normalisation

Suzan Erven

Radboud University Nijmegen

Consider (first-order) rules

(1): $(x \times y) \times z \rightarrow x \times (y \times z)$ (2): $i(x \times y) \rightarrow i(y) \times i(x)$

Radboud University Nijmegen

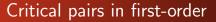
Critical pairs in first-order

Consider (first-order) rules

(1): $(x \times y) \times z \rightarrow x \times (y \times z)$ (2): $i(x \times y) \rightarrow i(y) \times i(x)$

Unifying gives terms $((x \times y) \times z) \times v$ and $i((x \times y) \times z)$.

Radboud University Nijmegen



Consider (first-order) rules

(1):
$$(x \times y) \times z \rightarrow x \times (y \times z)$$

(2): $i(x \times y) \rightarrow i(y) \times i(x)$

Unifying gives terms $((x \times y) \times z) \times v$ and $i((x \times y) \times z)$.

Reducing gives critical pairs, both of which converge. So, the system is (at least) locally confluent.

Radboud University Nijmegen

Critical pairs in higher-order

Idea is the same

- Idea is the same
- Problem: taking a subterm can free bound variables

Radboud University Nijmegen

Critical pairs in higher-order

- Idea is the same
- Problem: taking a subterm can free bound variables
- Solution: Remember which were freed, and bind again before determining the mgu

Radboud University Nijmegen

Critical pairs in higher-order

- Idea is the same
- Problem: taking a subterm can free bound variables
- Solution: Remember which were freed, and bind again before determining the mgu

Critical Pair Lemma

An HRS *R* where all rules are of base type is *locally confluent* if and only if for each critical pair $u_1 = u_2$ in *R*, u_1 and u_2 have a common reduct.

(And R terminating \rightarrow decision procedure for confluence)

Outline

First-order rewriting recap

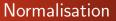
Extension to higher-order

Confluence

Normalisation

Radboud University Nijmegen

Termination undecidable



- Termination undecidable
- Strategy

Radboud University Nijmegen

Normalisation

- Termination undecidable
- Strategy (\neq always succeed)

- Termination undecidable
- Strategy (≠ always succeed) is normalising if it yields a normal form for any term that has one

Radboud University Nijmegen

- Termination undecidable
- Strategy (≠ always succeed) is normalising if it yields a normal form for any term that has one
- Steal from first-order (...again)

Radboud University Nijmegen

- Termination undecidable
- Strategy (≠ always succeed) is normalising if it yields a normal form for any term that has one
- Steal from first-order (...again)

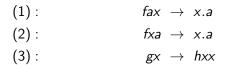
Definition: Outermost-fair rewriting

A rewrite sequence is *outermost-fair* if every outermost redex is eventually eliminated. I.e. if either it ends in nf, or it's impossible to trace infinitely long an outermost redex occurrence.

Radboud University Nijmegen

Outermost reduction

Consider HRS



Radboud University Nijmegen

Outermost reduction

Consider HRS

(1): $fax \rightarrow x.a$ (2): $fxa \rightarrow x.a$ (3): $gx \rightarrow hxx$

Term g(faa) has one outermost redex occurrence, which we apply (3) on.

Radboud University Nijmegen

Outermost reduction

Consider HRS

(1): $fax \rightarrow x.a$ (2): $fxa \rightarrow x.a$ (3): $gx \rightarrow hxx$

Term g(faa) has one outermost redex occurrence, which we apply (3) on. Term faa has two: apply either (1) or (2).

Radboud University Nijmegen

Infinite outermost chain

Let $s: s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$ be an infinite rewrite sequence. An *infinite outermost chain* in *s* is an infinite sequence of redex occurrences w_m, m_{m+1}, \ldots such that

Radboud University Nijmegen

Infinite outermost chain

Let $s: s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$ be an infinite rewrite sequence. An *infinite outermost chain* in *s* is an infinite sequence of redex occurrences w_m, m_{m+1}, \ldots such that

(1) w_p is an outermost redex occurrence in s_p for every $p \ge m$

Radboud University Nijmegen

Infinite outermost chain

Let $s: s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$ be an infinite rewrite sequence. An *infinite outermost chain* in *s* is an infinite sequence of redex occurrences w_m, m_{m+1}, \ldots such that

- **1** w_p is an outermost redex occurrence in s_p for every $p \ge m$
- 2 w_p is a *residual* of w_{p-1} for every p > m

Radboud University Nijmegen

Requirements: Almost orthogonal

- Left-linear: In each rule, each bounded variable occurs at most once in the lhs
- Orthogonal: Left-linear and no critical pairs
- Weakly orthogonal: Left-linear and only trivial critical pairs
- Almost orthogonal: Weakly orthogonal + redex occurrence overlaps only at root of redex occurrences

Radboud University Nijmegen

A rewrite rule is *fully extended* if every occurrence of a bound variable has (the η -normal form of) every bound variable that it is in the scope of as an argument.

An HRS is fully extended if all of its rules are.

Radboud University Nijmegen

Normalisation strategy

- If a system is
 - Almost orthogonal and
 - Ø Fully extended
- then the following holds

Theorem

Let s_0 be a weakly normalising term. Every outermost-fair rewrite sequence starting in s_0 eventually ends in a normal form.

Radboud University Nijmegen

Wrap-up

We saw

- What patterns are, and why we want them
- How to use them to extend rewriting systems to higher-order
- How critical pairs work in an HRS
- The consequences w.r.t. confluence
- A normalisation strategy for certain HRSs
- Briefly, what the requirements on an HRS are for the strategy to be reliable

Radboud University Nijmegen

Introduction First-order rewriting recap Extension to higher-order Confluence Normalisation

