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Soft evidence
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e Properties of Jeffrey’s rule and Pearl's rule
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|
Updating beliefs
e We form beliefs, e.g. about the color of a car.

e Formally, a belief is a probability distribution.
e \When learning new evidence, we update our beliefs.
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|
Updating beliefs

e We form beliefs, e.g. about the color of a car.
e Formally, a belief is a probability distribution.
e When learning new evidence, we update our beliefs.

e Hard evidence: A statement that some event happened
with certainty, e.g. ‘The car is red!

e Soft evidence: A statement that some event happened with
some uncertainty, e.g. ‘I'm 70% sure the car is red!
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Soft evidence

e Soft evidence: A statement that some event happened with
some uncertainty, e.g. ‘I'm 70% sure the car is red.
e Two ways to deal with soft evidence, giving very different
results:
e Jeffrey's rule (1965)
e Pearl’s rule (1988)
e Main challenges:
e Common mathematical framework
® When to use which rule?

e Studied by Jacobs (2019) and Jacobs (2021).
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I
States and channels

e State w € D(X): probability distribution over X
W= T‘1|$1> + et Tn|xn>

where z; € X, r; € [0,1]and 37 r; = 1.
We also write w(z;) = ;.
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I
States and channels

e State w € D(X): probability distribution over X
W= T‘1|$1> + et Tn|xn>

where z; € X, r; € [0,1]and 37 r; = 1.
We also write w(zx;) = r;.

e Channel: Afunction c: X — D(Y).
We also write ¢: X —o» Y.
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I
States and channels

e State w € D(X): probability distribution over X
W= T‘1|I1> +oet Tn|xn>

where z; € X, r; € [0,1]and 37 r; = 1.
We also write w(z;) = ;.

e Channel: Afunction ¢: X — D(Y).
We also write ¢: X —o» Y.

e State transformation: given w € D(X) and ¢: X —o- Y.
The predicted state ¢ > w € D(Y) is given by

c>>w Zw

This is the ‘law of total probability.
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Example: burglar and alarm
Each night, there is a 0.1% chance that a burglar will break into
my house. If a burglar is in my house, the alarm goes off with

80% probability. If there is no burglar, the alarm goes off with a
1% probability.
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|
Example: burglar and alarm

Each night, there is a 0.1% chance that a burglar will break into
my house. If a burglar is in my house, the alarm goes off with
80% probability. If there is no burglar, the alarm goes off with a
1% probability.

e Let X = {b,b'}: there is a burglar (b) or not (b+).

e LetY = {a,a'}: the alarm goes off (a) or not (a').
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|
Example: burglar and alarm

Each night, there is a 0.1% chance that a burglar will break into
my house. If a burglar is in my house, the alarm goes off with
80% probability. If there is no burglar, the alarm goes off with a
1% probability.

e Let X = {b,b'}: there is a burglar (b) or not (b+).

* LetY = {a,a"}: the alarm goes off (a) or not (at).

e State: w = 0.001[b) + 0.999|b") € D(X).
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Example: burglar and alarm

Each night, there is a 0.1% chance that a burglar will break into
my house. If a burglar is in my house, the alarm goes off with
80% probability. If there is no burglar, the alarm goes off with a
1% probability.

Let X = {b,b}: there is a burglar (b) or not (b+).

Let Y = {a, a"}: the alarm goes off (a) or not (at).

State: w = 0.001]b) + 0.999/b*) € D(X).

c(b) = 0.8]a) + 0.2]at)

c(bt) = 0.01]a) + 0.99]a").

Gives the probability distribution over the states of the
alarm based on whether or not there is a burglar.

Channel: ¢: X -o» Y, {
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Example: burglar and alarm

Let X = {b,b"}: there is a burglar (b) or not (b*).
Let Y = {a,a'}: the alarm goes off (a) or not (a*).
State: w = 0.001|b) + 0.999|b) € D(X).

c(b) = 0.8]a) + 0.2]a’)
c(bt) = 0.01]a) + 0.99|at).

Channel: ¢: X -o»Y, {
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Example: burglar and alarm

Let X = {b,b"}: there is a burglar (b) or not (b*).
Let Y = {a, a"}: the alarm goes off (a) or not (at).
State: w = 0.001[b) + 0.999[b*) € D(X).

c(b) = 0.8]a) + 0.2]a*)
c(bt) = 0.01]a) + 0.99|at).

Channel: ¢: X -o= Y, {

Predicted state:

(e>»w)(a) = wb)e(b)(a)+wd)e(b)(a)
= 0.001-0.8 4 0.999 - 0.01 = 0.01079.

Similarly, (¢ > w)(at) = 0.98921.
So ¢ > w = 0.01079]a) + 0.98921|at) € D(Y).
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|
Fuzzy predicates

e Fuzzy predicate p: X — [0,1]: assignsto eachz € X a
measure to what extend some property p is true.
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Fuzzy predicates
e Fuzzy predicate p: X — [0,1]: assignsto eachz € X a

measure to what extend some property p is true.
e Validity of predicate p in state o € D(X):

ocEp= Za(x) -p(x).

This can also be seen as an ‘expected value’.
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Fuzzy predicates

e Fuzzy predicate p: X — [0,1]: assignsto eachz € X a
measure to what extend some property p is true.

e Validity of predicate p in state o € D(X):
ocEp= Za(x) -p(z).

This can also be seen as an ‘expected value’.
* Updated state o, € D(X), given that predicate p holds:

o(w) - pl)

o) = T
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I
Predicate transformation

e Predicates can also be transformed over a channel.

e |n the opposite direction: given a channel ¢: X -o» Yand a
predicate ¢: Y — [0, 1], define a predicate
c<q: X —10,1]:

c<<q Zc
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I
Predicate transformation

e Predicates can also be transformed over a channel.

e |n the opposite direction: given a channel ¢: X -o» Yand a
predicate ¢: Y — [0, 1], define a predicate
c<q: X —1[0,1)

c<<q Zc

Lemma

Let ¢: X —o» Y be a channel, let g: Y — [0, 1] be a predicate and
letwe D(X). Then (c > w)Fg=wk (c K q).
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Predicate and state transformation

Lemma

Let ¢: X —o» Y be a channel, let ¢: Y — [0, 1] be a predicate and
letwe D(X). Then (c » w)Fg=wk (c K q).
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Predicate and state transformation

Lemma

Let ¢: X —o» Y be a channel, let ¢: Y — [0, 1] be a predicate and
letwe D(X). Then (c > w)Eqg=wE (c K q).

Proof. (C > w) Eq = Z(C > W)(y)q<y)

Y
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Predicate and state transformation

Lemma

Let ¢: X —o» Y be a channel, let ¢: Y — [0, 1] be a predicate and
letwe D(X). Then (c > w)Eqg=wE (c K q).

Proof.

(c>w)kFqg = > (e3> w)(yaqy)

= ¥ (et c@w ) o

Wietze Koops Learning from soft evidence January 2022 10/30




Predicate and state transformation

Lemma

Let ¢: X —o» Y be a channel, let ¢: Y — [0, 1] be a predicate and
letwe D(X). Then (c > w)Eqg=wE (c K q).

Proof.

(c>w)kFqg = > (e3> w)(yaqy)

= ¥ (et c@w ) o
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Predicate and state transformation

Lemma

Let ¢: X —o» Y be a channel, let ¢: Y — [0, 1] be a predicate and
letwe D(X). Then (c > w)Eqg=wE (c K q).

Proof.

(c>w)kFqg = > (e3> w)(yaqy)

wk (c <« q).
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-]
Bayesian inversion

® Given a (prior) state o € D(X) and a channel ¢: X - Y, it
is possible to define an inverted channel ¢} : YV o X:

i o(z) - c(z)(y)
Co = —— 7).
() ; > o)) |z)
e let1,: Y — [0,1] be a predicate on satisfying
1 ify =y
1 (y) =
y) {O otherwise.
Then Ci(?J) - U|c<<1y'
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|
Example: burglar and alarm

o let X ={bbt}andY = {a,a'}.

e State: w = 0.001]b) + 0.999[b) € D(X).

c(b) = 0.8]|a) + 0.2]a")

c(bt) = 0.01]a) + 0.99]a").

e Predicted state: ¢ >» w = 0.01079|a) + 0.98921]a’) € D(Y).

e Channel: ¢: X =Y, {
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|
Example: burglar and alarm

o let X ={bbt}andY = {a,a'}.

e State: w = 0.001]b) + 0.999[b) € D(X).

c¢(b) = 0.8|a) + 0.2|a")

c(bt) = 0.01]a) + 0.99]a").
Predicted state: ¢ > w = 0.01079|a) + 0.98921|at) € D(Y).
Inverted channel ¢l,: Vo X:

iy @) -cd)(@) w(bt) - e(b*)(a)
“(9) = T 5 0@ Pt T e 0@

= S + S

0.0741b) 4 0.9259|bL).

Channel: ¢: X -o» Y, {

o)

Similarly, ¢f,(at) ~ 0.0002|b) + 0.9998|b%).
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|
Jeffrey’s rule and Pearl’s rule

e letc¢: X —o» Y be a channel with prior state o € D(X).

e For Jeffrey's rule, consider evidence in the form of a state
p € D(Y). Then Jeffrey’s update is given by

ck > p e DX).
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|
Jeffrey’s rule and Pearl’s rule

e letc: X —o» Ybe a channel with prior state o € D(X).

e For Jeffrey's rule, consider evidence in the form of a state
p € D(Y). Then Jeffrey’s update is given by

ck > p e DX).

e For Pearl's rule, consider evidence in the form of a
predicate ¢: Y — [0, 1]. Then Pearl's update is given by

Olecq € D(X).
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Interpretation of Jeffrey’'s and Pearl’s rule

e Jeffrey’s rule assumes that evidence is of the type ‘all
things considered), I.e. taking into account other evidence.

e Jeffrey's rule can be interpreted as a correction.

e Pearl's rule assumes that evidence is of the type ‘nothing
else considered’, i.e. not taking into account other evidence.

e Pearl’s rule can be interpreted as an improvement.
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Example: soft evidence

Around 3% of the cars in a city is red. One day, a car drives way
too fast through the city center. The police asks for the car
color. A witness: I'm 70% sure the car is red.

e Prior probability: Pr(r) = :2; and Pr (r+) = 3L
o Let X = {r,r*} and letw = 35|r) + 25|rt) € D(X).
e Channel: ¢: X —o» X defined by ¢(z) = 1]z).
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Example: soft evidence

Around 3% of the cars in a city is red. One day, a car drives way
too fast through the city center. The police asks for the car

color. A witness: I'm 70% sure the car is red.
e Prior probability: Pr(r) = :2; and Pr (r+) = 3L
o Let X = {r,r*} and letw = 35|r) + 25|rt) € D(X).
e Channel: ¢: X —o» X defined by ¢(z) = 1]z).
e Pearl’s rule: predicate ¢: X — [0,1] defined by ¢(r) = &~

~ 10
and q(r+) = {%. To compute: w|,,.
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Example: soft evidence

Around 3% of the cars in a city is red. One day, a car drives way
too fast through the city center. The police asks for the car
color. A witness: I'm 70% sure the car is red.

e Prior probability: Pr(r) = :2; and Pr (r+) = 3L

Let X = {r,r*} and letw = :25|r) + 5 |rt) € D(X).

Channel: ¢: X —o» X defined by ¢(z) = 1|x).

e Pearl's rule: predicate ¢: X — [0, 1] defined by ¢(r) = &
and q(r+) = {%. To compute: w|,,.
e We have
(c<q)z)=> c@)(y)qly) = 8,y aly) = qlx),
Yy Yy
S0ckKqg=aq.
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Example: soft evidence

e Prior probability: Pr(r) = :3; and Pr (rt) = ST

Let X = {r,r*} and letw = $35|r) + 95 |rt) € D(X).
Channel: ¢: X —o» X defined by ¢(z) = 1|x).

Pearl’s rule: predicate g: X — [0, 1] defined by ¢(r) = &
and q(r+) = . To compute: w|,,.

We have ¢ « q=q, S0 w|c<<q(x) - w'q(x) = W(Z«;?:ql(lm).
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Example: soft evidence

e Prior probability: Pr(r) = :3; and Pr (rt) = ST

Let X = {r,r*} and letw = $35|r) + 95 |rt) € D(X).
Channel: ¢: X —o» X defined by ¢(z) = 1|x).

Pearl’s rule: predicate g: X — [0, 1] defined by ¢(r) = &
and q(r+) = . To compute: w|,,.

We have ¢ « q=4q,SO w|c<<q(x) = W|q($) — wEkq -

wE qg=uw(r)q(r) +w(7‘L)q(rL) = 10010 T 10610 = To60-
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Example: soft evidence

* Prior probability: Pr(r) = 135 and Pr (") = 7.

e Let X = {r,r*} and letw = 35|r) + 75[rt) € D(X).

e Channel: ¢: X —o» X defined by ¢(z) = 1]z).

e Pearl's rule: predicate ¢: X — [0,1] defined by ¢(r) = 15
and q(r+) = . To compute: w|,,.

e \We have ¢ <« q=q, SO w|c<<q(x) = W|q(l‘) — wEkq -
* wk g =wr)q(r) +wr)a(r) = 3515 + 15516 = t000-

— wlglr) _ 21/1000 _ 21 . (67

® Woq(r) = wkq  312/1000 _ 312
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Example: soft evidence

e Prior probability: Pr(r) = % and Pr (rt) = %‘

e Let X = {r,r*} and letw = 35|r) + 75[rt) € D(X).

e Channel: ¢: X —o» X defined by ¢(z) = 1]z).

e Pearl's rule: predicate ¢: X — [0,1] defined by ¢(r) = 15
and q(r+) = . To compute: w|,,.

e \We have ¢ « q=4q,SO w|c<<q(x) = (A)|q($) -

* wk qg=uw(r)gr) +W(7’L)Q<TL> = 10010 T 10010 — 1000

w(r)q(r 21/1000
® Wewg(r) = (w)ﬁq((; L= 312//1000 = 315 ~ 0.067.
1y _ w(rbg(rt) _ 291/1000 _ 291
b W|c<<q('r ) = wliqq = 312/1000 312 ~ 0.933.
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Example: soft evidence

e Prior probability: Pr(r) = % and Pr (rt) = %@70‘

e Let X = {r,r*} and letw = 35|r) + 75[rt) € D(X).

e Channel: ¢: X —o» X defined by ¢(z) = 1]z).

e Pearl's rule: predicate ¢: X — [0,1] defined by ¢(r) = 15
and q(r+) = . To compute: w|,,.

Q_
—~
8
~—
|
£
&
S
B

® We have ¢ < ¢ = ¢, SO W| .y (7) = w

° wk qg=uw(r)q(r) ‘HU(TL)(I(TL) = 10010 T 10010 — 1000

_ w(r)g(r) _ 21/1000 _ 21
® Wewy(r) = wizqq = 31277000 — 313 ~ 0-067.
1\ _ w(rbg(rt) _ 291/1000 _ 291
® Wleay(rh) = wlﬁqq = 312/1000 — 312 ~ 0-933.
® SO Wlee, = 32T12|7°> + %]F) € D(X).
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Example: soft evidence

Around 3% of the cars in a city is red. One day, a car drives way
too fast through the city center. The police asks for the car
color. A witness: I'm 70% sure the car is red.
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Example: soft evidence

Around 3% of the cars in a city is red. One day, a car drives way
too fast through the city center. The police asks for the car
color. A witness: I'm 70% sure the car is red.

e Prior probability: Pr(r) = 25 and Pr (rt) = %

100 100°
o Let X = {r,rt} and letw = 25|r) + 2L |rt) € D(X).

e Channel: ¢: X —o» X defined by ¢(x) = 1]z).
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Example: soft evidence

Around 3% of the cars in a city is red. One day, a car drives way
too fast through the city center. The police asks for the car
color. A witness: I'm 70% sure the car is red.

e Prior probability: Pr(r) = 125 and Pr (r+) = 3L

o Let X = {r,rt} and letw = 25|r) + 2L |rt) € D(X).

e Channel: ¢: X —o» X defined by ¢(x) = 1]z).

o Jeffrey's rule: state p € D(X) defined by p = L|r) + &|rt).
To compute: S p.
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Example: soft evidence

Around 3% of the cars in a city is red. One day, a car drives way
too fast through the city center. The police asks for the car
color. A witness: I'm 70% sure the car is red.

e Prior probability: Pr(r) = 125 and Pr (r+) = 3L
Let X = {r,rt} and letw = 25|r) + 25 |rt) € D(X).
Channel: ¢: X —o» X defined by ¢(z) = 1|x).

Jeffrey's rule: state p € D(X) defined by p = &|r) + S |rt).
To compute: S p.
We have ¢ > w = w and hence

— > w)) " (e»w)y)

ly) = 1ly) = c(y),

SO C:L =cC.
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Example: soft evidence

e Prior probability: Pr(r) = % and Pr (rt) = %‘

Let X = {r,r*} and letw = $35|r) + 95 |rt) € D(X).
Channel: ¢: X —o» X defined by ¢(z) = 1|x).

Jeffrey's rule: state p € D(X) defined by p = &|r) + 3 |rt).
To compute: > p.

We have CI, =c.
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Example: soft evidence

Prior probability: Pr(r) = {35 and Pr (rt) = 25
Let X = {r,r*} and letw = $35|r) + 95 |rt) € D(X).
Channel: ¢: X —o» X defined by ¢(z) = 1|x).

Jeffrey's rule: state p € D(X) defined by p = &|r) + 3 |rt).
To compute: > p.

We have CI, =c.

We have

(e, > p)( Zp )zZp(m)(S

soch > p=p=2L|r)+ rt) € D(X).
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Example: soft evidence

Around 3% of the cars in a city is red. One day, a car drives way
too fast through the city center. The police asks for the car
color. A witness: I’m 70% sure the car is red.

e Pearl’s rule: Z5|r) + 224 rt) € D(X).
o Jeffrey's rule: 5|r) + 3|rt) € D(X).

e Pearl's rule: although the witness is 70% sure, it is much
more likely that the car was not red.

e Jeffrey’s rule: the witness is 70% sure taking into account
there are very few red cars.

e In general the inverted channel ¢, and hence the result of
Jeffrey’s rule actually depends on the prior.
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Applications of Jeffrey’s rule do not commute

e Inthe red car example, we saw that ¢, > p = p.
e Now consider two witnesses with states p; and p,.
e First witness 1, then witness 2: ¢f, > p, = py, then
c,T)1 > py = py. SO final updated state is p,.
e First witness 2, then witness 1: Final updated state is p;.

e |f witness 1's update is done first, witness 2 needs to take
Into account witness 1's testimony.
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-]
Applications of Jeffrey’s rule do not commute

e Inthe red car example, we saw that ¢, > p = p.
e Now consider two witnesses with states p; and p,.
e First witness 1, then witness 2: ¢f, > p, = py, then
c,T)1 > py = py. SO final updated state is p,.
e First witness 2, then witness 1: Final updated state is p;.

e |f witness 1's update is done first, witness 2 needs to take
Into account witness 1's testimony.

e So applications of Jeffrey’s rule do not commute.
e Applications of Pearl’s rule do commute.
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Improvement and correction without effect

e When using Pearl’s rule with a uniform likelihood, the
beliefs do not change,

l.e. improving with no information has no effect.
e When using Jeffrey’s rule with the current belief, the beliefs

do not change,
l.e. correcting beliefs to the current belief has no effect.
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Pearl’s rule increases validity

Theorem

Let ¢: X —o» Y be a channel with prior state o € D(X) and let
q: Y —[0,1] be a predicate. Let op = 0|, denotes Pearl’s
update. Pearl’s rule increases validity:

(c>»o0p)Eqg>(c>»0)Fq.

Wietze Koops Learning from soft evidence
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Pearl’s rule increases validity

Lemma

Letw € D(X) be a state and let p: X — [0, 1] be a predicate.
Assume that w E p is nonzero. Then

wl,Fp>wFp.
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Pearl’s rule increases validity

Lemma

Letw € D(X) be a state and let p: X — [0, 1] be a predicate.
Assume that w E p is nonzero. Then

wl,Fp>wFp.

Proof. RecallthatwF p =3~ w(z)p(z) and wl,(z) = w(ij;)m)_

pl()

Hence, wl, Fp= Y, “E2)p(0) — LS w(a)p(x)?.
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Pearl’s rule increases validity

Lemma

Letw € D(X) be a state and let p: X — [0, 1] be a predicate.
Assume that w E p is nonzero. Then

wl,Fp>wFp.
Proof. Recall thatw = p = 3~ w(x)p(x) and wl,(z) w(ij;)m)_

Hence, wl, Fp =3 <P p(g) = _L S~ w(z)p(z)2. Soitis
sufficient to show that

(Set@p?) > wrp’ = (X w<x>p<x>)2-

x €T
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Pearl’s rule increases validity

Lemma

Let w € D(X) be a state and let p: X — [0, 1] be a predicate.
Assume that w & p is nonzero. Then

wl, Fp>wFEp.

Proof. The Cauchy-Schwarz inequality states that

(Zz yf) (Zz zf) > (ZZ yi2i>2' Let y, = Jw(z)p(x) and
z; = y/w(zx). Then

(T e@p?) (Lo > (Zw<w>p<w>)2.

xX X xX
=1
Wietze Koops Learning from soft evidence

January 2022 2430



Pearl’s rule increases validity

Theorem

Let ¢: X —o» Y be a channel with prior state o € D(X) and let
q: Y —[0,1] be a predicate. Let op = 0|, denotes Pearl’s
update. Pearl’s rule increases validity:

(c>»o0p)Eqg>(c>»0)Fq.

Proof. For any state w we have (¢ » w)F ¢=wE (¢ < q). By
the lemma, it follows that

(C > (U|c<<q)) Fqg = J|c<<q F(c<q)
> oF(cxq)=(c>»o0)kFq.
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|
Jeffrey’s rule decreases KL-divergence

Definition (Kullback-Leibler divergence)

Let w,p € D(X). The KL divergence Dy (w, p) is defined as
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Jeffrey’s rule decreases KL-divergence

Definition (Kullback-Leibler divergence)

Let w,p € D(X). The KL divergence Dy (w, p) is defined as

Dgp(w,p) =) w(z)ln (%)

® Dip(w,p)>0and Dy (w,p) =0ifand only if w = p.
e The KL divergence is not symmetric, i.e. in general
Dy (w,p) # Dgp(p,w).
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Jeffrey’s rule decreases KL-divergence

Let ¢: X —o» Y be a channel with prior state o € D(X). Assume
that Y'is finite and that ¢ > o has full support. Let T € D(Y') be
an evidence state, and let o ; = ¢l > rdenote Jeffrey’s update.
Jeffrey’s rule decreases divergence:

Dy (1,¢> 05) < Dgp(1,¢ > 0).
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Open questions

e Are there other measures which always increase or

decrease when doing an update according to Pearl’s rule or
Jeffrey's rule?

e What to do when evidence takes some, but not all other
information into account?

e What does soft evidence actually mean?

e |s there a cognitive difference between 'improvement’ and
‘correction’?
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Conclusion

e Pearl's rule: improvement
Evidence type: ‘nothing else considered..

e Jeffrey’s rule: correction
Evidence type: ‘all things considered..

e Pearl’s rule increases validity of the updating predicate.
e Jeffrey’s rule decreases divergence with the updating state.
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