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Overview

• Updating beliefs
• Soft evidence
• Mathematical framework
• Jeffrey’s rule and Pearl’s rule
• Example
• Properties of Jeffrey’s rule and Pearl’s rule
• Open questions and conclusion
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Updating beliefs

• We form beliefs, e.g. about the color of a car.
• Formally, a belief is a probability distribution.
• When learning new evidence, we update our beliefs.

• Hard evidence: A statement that some event happened
with certainty, e.g. ‘The car is red.’

• Soft evidence: A statement that some event happened with
some uncertainty, e.g. ‘I’m 70% sure the car is red.’

Wietze Koops Learning from soft evidence January 2022 3 / 30



Updating beliefs

• We form beliefs, e.g. about the color of a car.
• Formally, a belief is a probability distribution.
• When learning new evidence, we update our beliefs.

• Hard evidence: A statement that some event happened
with certainty, e.g. ‘The car is red.’

• Soft evidence: A statement that some event happened with
some uncertainty, e.g. ‘I’m 70% sure the car is red.’

Wietze Koops Learning from soft evidence January 2022 3 / 30



Soft evidence

• Soft evidence: A statement that some event happened with
some uncertainty, e.g. ‘I’m 70% sure the car is red.’

• Two ways to deal with soft evidence, giving very different
results:

• Jeffrey’s rule (1965)
• Pearl’s rule (1988)

• Main challenges:
• Common mathematical framework
• When to use which rule?

• Studied by Jacobs (2019) and Jacobs (2021).
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States and channels

• State 𝜔 ∈ 𝒟(𝑋): probability distribution over 𝑋

𝜔 = 𝑟1|𝑥1⟩ + ⋯ + 𝑟𝑛|𝑥𝑛⟩

where 𝑥𝑖 ∈ 𝑋, 𝑟𝑖 ∈ [0, 1] and ∑𝑖 𝑟𝑖 = 1.
We also write 𝜔(𝑥𝑖) = 𝑟𝑖.

• Channel: A function 𝑐 ∶ 𝑋 → 𝒟(𝑌 ).
We also write 𝑐 ∶ 𝑋 ⟶•∘ 𝑌.

• State transformation: given 𝜔 ∈ 𝒟(𝑋) and 𝑐 ∶ 𝑋 ⟶•∘ 𝑌.
The predicted state 𝑐 ≫ 𝜔 ∈ 𝒟(𝑌 ) is given by

(𝑐 ≫ 𝜔)(𝑦) = ∑
𝑥

𝜔(𝑥) ⋅ 𝑐(𝑥)(𝑦).

This is the ‘law of total probability’.
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Example: burglar and alarm
Each night, there is a 0.1% chance that a burglar will break into
my house. If a burglar is in my house, the alarm goes off with
80% probability. If there is no burglar, the alarm goes off with a
1% probability.

• Let 𝑋 = {𝑏, 𝑏⟂}: there is a burglar (𝑏) or not (𝑏⟂).
• Let 𝑌 = {𝑎, 𝑎⟂}: the alarm goes off (𝑎) or not (𝑎⟂).
• State: 𝜔 = 0.001|𝑏⟩ + 0.999|𝑏⟂⟩ ∈ 𝒟(𝑋).

• Channel: 𝑐 ∶ 𝑋 ⟶•∘ 𝑌, {𝑐(𝑏) = 0.8|𝑎⟩ + 0.2|𝑎⟂⟩
𝑐(𝑏⟂) = 0.01|𝑎⟩ + 0.99|𝑎⟂⟩.

• Gives the probability distribution over the states of the
alarm based on whether or not there is a burglar.
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Example: burglar and alarm

• Let 𝑋 = {𝑏, 𝑏⟂}: there is a burglar (𝑏) or not (𝑏⟂).
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𝑐(𝑏⟂) = 0.01|𝑎⟩ + 0.99|𝑎⟂⟩.

• Predicted state:

(𝑐 ≫ 𝜔)(𝑎) = 𝜔(𝑏)𝑐(𝑏)(𝑎) + 𝜔(𝑏⟂)𝑐(𝑏⟂)(𝑎)
= 0.001 ⋅ 0.8 + 0.999 ⋅ 0.01 = 0.01079.

Similarly, (𝑐 ≫ 𝜔)(𝑎⟂) = 0.98921.
So 𝑐 ≫ 𝜔 = 0.01079|𝑎⟩ + 0.98921|𝑎⟂⟩ ∈ 𝒟(𝑌 ).
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Fuzzy predicates

• Fuzzy predicate 𝑝∶ 𝑋 → [0, 1]: assigns to each 𝑥 ∈ 𝑋 a
measure to what extend some property 𝑝 is true.

• Validity of predicate 𝑝 in state 𝜎 ∈ 𝒟(𝑋):

𝜎 ⊨ 𝑝 = ∑
𝑥

𝜎(𝑥) ⋅ 𝑝(𝑥).

This can also be seen as an ‘expected value’.
• Updated state 𝜎|𝑝 ∈ 𝒟(𝑋), given that predicate 𝑝 holds:

𝜎|𝑝(𝑥) = 𝜎(𝑥) ⋅ 𝑝(𝑥)
𝜎 ⊨ 𝑝

.
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Predicate transformation

• Predicates can also be transformed over a channel.
• In the opposite direction: given a channel 𝑐 ∶ 𝑋 ⟶•∘ 𝑌 and a
predicate 𝑞 ∶ 𝑌 → [0, 1], define a predicate
𝑐 ≪ 𝑞∶ 𝑋 → [0, 1]:

(𝑐 ≪ 𝑞)(𝑥) = ∑
𝑦

𝑐(𝑥)(𝑦) ⋅ 𝑞(𝑦).

Lemma
Let 𝑐 ∶ 𝑋 ⟶•∘ 𝑌 be a channel, let 𝑞 ∶ 𝑌 → [0, 1] be a predicate and
let 𝜔 ∈ 𝒟(𝑋). Then (𝑐 ≫ 𝜔) ⊨ 𝑞 = 𝜔 ⊨ (𝑐 ≪ 𝑞).
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Predicate and state transformation

Lemma
Let 𝑐 ∶ 𝑋 ⟶•∘ 𝑌 be a channel, let 𝑞 ∶ 𝑌 → [0, 1] be a predicate and
let 𝜔 ∈ 𝒟(𝑋). Then (𝑐 ≫ 𝜔) ⊨ 𝑞 = 𝜔 ⊨ (𝑐 ≪ 𝑞).

Proof.
(𝑐 ≫ 𝜔) ⊨ 𝑞 = ∑

𝑦
(𝑐 ≫ 𝜔)(𝑦)𝑞(𝑦)

= ∑
𝑦

(∑
𝑥

𝜔(𝑥) ⋅ 𝑐(𝑥)(𝑦)) 𝑞(𝑦)

= ∑
𝑥

(∑
𝑦

𝑐(𝑥)(𝑦) ⋅ 𝑞(𝑦)) 𝜔(𝑥)

= ∑
𝑥

(𝑐 ≪ 𝑞)(𝑥)𝜔(𝑥) = 𝜔 ⊨ (𝑐 ≪ 𝑞).
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Bayesian inversion

• Given a (prior) state 𝜎 ∈ 𝒟(𝑋) and a channel 𝑐 ∶ 𝑋 ⟶•∘ 𝑌, it
is possible to define an inverted channel 𝑐†

𝜎 ∶ 𝑌 ⟶•∘ 𝑋:

𝑐†
𝜎(𝑦) = ∑

𝑥

𝜎(𝑥) ⋅ 𝑐(𝑥)(𝑦)
(𝑐 ≫ 𝜎)(𝑦)

|𝑥⟩.

• Let 1𝑦 ∶ 𝑌 → [0, 1] be a predicate on satisfying

1𝑦(𝑦′) = {
1 if 𝑦′ = 𝑦
0 otherwise.

Then 𝑐†
𝜎(𝑦) = 𝜎|𝑐≪1𝑦

.
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Example: burglar and alarm

• Let 𝑋 = {𝑏, 𝑏⟂} and 𝑌 = {𝑎, 𝑎⟂}.
• State: 𝜔 = 0.001|𝑏⟩ + 0.999|𝑏⟂⟩ ∈ 𝒟(𝑋).

• Channel: 𝑐 ∶ 𝑋 ⟶•∘ 𝑌, {𝑐(𝑏) = 0.8|𝑎⟩ + 0.2|𝑎⟂⟩
𝑐(𝑏⟂) = 0.01|𝑎⟩ + 0.99|𝑎⟂⟩.

• Predicted state: 𝑐 ≫ 𝜔 = 0.01079|𝑎⟩ + 0.98921|𝑎⟂⟩ ∈ 𝒟(𝑌 ).

• Inverted channel 𝑐†
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𝜔(𝑎⟂) ≈ 0.0002|𝑏⟩ + 0.9998|𝑏⟂⟩.

Wietze Koops Learning from soft evidence January 2022 12 / 30



Example: burglar and alarm

• Let 𝑋 = {𝑏, 𝑏⟂} and 𝑌 = {𝑎, 𝑎⟂}.
• State: 𝜔 = 0.001|𝑏⟩ + 0.999|𝑏⟂⟩ ∈ 𝒟(𝑋).

• Channel: 𝑐 ∶ 𝑋 ⟶•∘ 𝑌, {𝑐(𝑏) = 0.8|𝑎⟩ + 0.2|𝑎⟂⟩
𝑐(𝑏⟂) = 0.01|𝑎⟩ + 0.99|𝑎⟂⟩.

• Predicted state: 𝑐 ≫ 𝜔 = 0.01079|𝑎⟩ + 0.98921|𝑎⟂⟩ ∈ 𝒟(𝑌 ).
• Inverted channel 𝑐†

𝜔 ∶ 𝑌 ⟶•∘ 𝑋:

𝑐†
𝜔(𝑎) = 𝜔(𝑏) ⋅ 𝑐(𝑏)(𝑎)

(𝑐 ≫ 𝜔)(𝑎)
|𝑏⟩ + 𝜔(𝑏⟂) ⋅ 𝑐(𝑏⟂)(𝑎)

(𝑐 ≫ 𝜔)(𝑎)
|𝑏⟂⟩

= 0.001⋅0.8
0.01079 |𝑏⟩ + 0.999⋅0.01

0.01079 |𝑏⟂⟩
≈ 0.0741|𝑏⟩ + 0.9259|𝑏⟂⟩.

Similarly, 𝑐†
𝜔(𝑎⟂) ≈ 0.0002|𝑏⟩ + 0.9998|𝑏⟂⟩.

Wietze Koops Learning from soft evidence January 2022 12 / 30



Jeffrey’s rule and Pearl’s rule

• Let 𝑐 ∶ 𝑋 ⟶•∘ 𝑌 be a channel with prior state 𝜎 ∈ 𝒟(𝑋).
• For Jeffrey’s rule, consider evidence in the form of a state

𝜌 ∈ 𝒟(𝑌 ). Then Jeffrey’s update is given by

𝑐†
𝜎 ≫ 𝜌 ∈ 𝒟(𝑋).

• For Pearl’s rule, consider evidence in the form of a
predicate 𝑞 ∶ 𝑌 → [0, 1]. Then Pearl’s update is given by

𝜎|𝑐≪𝑞 ∈ 𝒟(𝑋).
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Interpretation of Jeffrey’s and Pearl’s rule

• Jeffrey’s rule assumes that evidence is of the type ‘all
things considered’, i.e. taking into account other evidence.

• Jeffrey’s rule can be interpreted as a correction.

• Pearl’s rule assumes that evidence is of the type ‘nothing
else considered’, i.e. not taking into account other evidence.

• Pearl’s rule can be interpreted as an improvement.
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Example: soft evidence
Around 3% of the cars in a city is red. One day, a car drives way
too fast through the city center. The police asks for the car
color. A witness: I’m 70% sure the car is red.

• Prior probability: Pr(𝑟) = 3
100 and Pr (𝑟⟂) = 97

100 .
• Let 𝑋 = {𝑟, 𝑟⟂} and let 𝜔 = 3

100 |𝑟⟩ + 97
100 |𝑟⟂⟩ ∈ 𝒟(𝑋).

• Channel: 𝑐 ∶ 𝑋 ⟶•∘ 𝑋 defined by 𝑐(𝑥) = 1|𝑥⟩.

• Pearl’s rule: predicate 𝑞 ∶ 𝑋 → [0, 1] defined by 𝑞(𝑟) = 7
10

and 𝑞(𝑟⟂) = 3
10 . To compute: 𝜔|𝑐≪𝑞.

• We have

(𝑐 ≪ 𝑞)(𝑥) = ∑
𝑦

𝑐(𝑥)(𝑦) ⋅ 𝑞(𝑦) = ∑
𝑦

𝛿𝑥𝑦 ⋅ 𝑞(𝑦) = 𝑞(𝑥),

so 𝑐 ≪ 𝑞 = 𝑞.
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Example: soft evidence

• Prior probability: Pr(𝑟) = 3
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10
and 𝑞(𝑟⟂) = 3

10 . To compute: 𝜔|𝑐≪𝑞.
• We have 𝑐 ≪ 𝑞 = 𝑞, so 𝜔|𝑐≪𝑞(𝑥) = 𝜔|𝑞(𝑥) = 𝜔(𝑥)𝑞(𝑥)

𝜔 ⊨ 𝑞 .

• 𝜔 ⊨ 𝑞 = 𝜔(𝑟)𝑞(𝑟) + 𝜔(𝑟⟂)𝑞(𝑟⟂) = 3
100

7
10 + 97

100
3

10 = 312
1000 .

• 𝜔|𝑐≪𝑞(𝑟) = 𝜔(𝑟)𝑞(𝑟)
𝜔 ⊨ 𝑞 = 21/1000

312/1000 = 21
312 ≈ 0.067.

• 𝜔|𝑐≪𝑞(𝑟⟂) = 𝜔(𝑟⟂)𝑞(𝑟⟂)
𝜔 ⊨ 𝑞 = 291/1000

312/1000 = 291
312 ≈ 0.933.

• So 𝜔|𝑐≪𝑞 = 21
312 |𝑟⟩ + 291

312 |𝑟⟂⟩ ∈ 𝒟(𝑋).
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Example: soft evidence
Around 3% of the cars in a city is red. One day, a car drives way
too fast through the city center. The police asks for the car
color. A witness: I’m 70% sure the car is red.

• Prior probability: Pr(𝑟) = 3
100 and Pr (𝑟⟂) = 97

100 .
• Let 𝑋 = {𝑟, 𝑟⟂} and let 𝜔 = 3

100 |𝑟⟩ + 97
100 |𝑟⟂⟩ ∈ 𝒟(𝑋).

• Channel: 𝑐 ∶ 𝑋 ⟶•∘ 𝑋 defined by 𝑐(𝑥) = 1|𝑥⟩.
• Jeffrey’s rule: state 𝜌 ∈ 𝒟(𝑋) defined by 𝜌 = 7

10 |𝑟⟩ + 3
10 |𝑟⟂⟩.

To compute: 𝑐†
𝜔 ≫ 𝜌.

• We have 𝑐 ≫ 𝜔 = 𝜔 and hence

𝑐†
𝜔(𝑦) = ∑

𝑥

𝜔(𝑥)𝑐(𝑥)(𝑦)
(𝑐 ≫ 𝜔)(𝑦)

|𝑥⟩ = 𝜔(𝑦)
(𝑐 ≫ 𝜔)(𝑦)

|𝑦⟩ = 1|𝑦⟩ = 𝑐(𝑦),

so 𝑐†
𝜔 = 𝑐.
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100 .
• Let 𝑋 = {𝑟, 𝑟⟂} and let 𝜔 = 3

100 |𝑟⟩ + 97
100 |𝑟⟂⟩ ∈ 𝒟(𝑋).

• Channel: 𝑐 ∶ 𝑋 ⟶•∘ 𝑋 defined by 𝑐(𝑥) = 1|𝑥⟩.
• Jeffrey’s rule: state 𝜌 ∈ 𝒟(𝑋) defined by 𝜌 = 7

10 |𝑟⟩ + 3
10 |𝑟⟂⟩.

To compute: 𝑐†
𝜔 ≫ 𝜌.

• We have 𝑐 ≫ 𝜔 = 𝜔 and hence

𝑐†
𝜔(𝑦) = ∑

𝑥

𝜔(𝑥)𝑐(𝑥)(𝑦)
(𝑐 ≫ 𝜔)(𝑦)

|𝑥⟩ = 𝜔(𝑦)
(𝑐 ≫ 𝜔)(𝑦)

|𝑦⟩ = 1|𝑦⟩ = 𝑐(𝑦),

so 𝑐†
𝜔 = 𝑐.
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Example: soft evidence
Around 3% of the cars in a city is red. One day, a car drives way
too fast through the city center. The police asks for the car
color. A witness: I’m 70% sure the car is red.

• Pearl’s rule: 21
312 |𝑟⟩ + 291

312 |𝑟⟂⟩ ∈ 𝒟(𝑋).
• Jeffrey’s rule: 7

10 |𝑟⟩ + 3
10 |𝑟⟂⟩ ∈ 𝒟(𝑋).

• Pearl’s rule: although the witness is 70% sure, it is much
more likely that the car was not red.

• Jeffrey’s rule: the witness is 70% sure taking into account
there are very few red cars.

• In general the inverted channel 𝑐†
𝜔 and hence the result of

Jeffrey’s rule actually depends on the prior.
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Applications of Jeffrey’s rule do not commute

• In the red car example, we saw that 𝑐†
𝜔 ≫ 𝜌 = 𝜌.

• Now consider two witnesses with states 𝜌1 and 𝜌2.
• First witness 1, then witness 2: 𝑐†

𝜔 ≫ 𝜌1 = 𝜌1, then
𝑐†

𝜌1 ≫ 𝜌2 = 𝜌2. So final updated state is 𝜌2.
• First witness 2, then witness 1: Final updated state is 𝜌1.
• If witness 1’s update is done first, witness 2 needs to take
into account witness 1’s testimony.

• So applications of Jeffrey’s rule do not commute.
• Applications of Pearl’s rule do commute.
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Improvement and correction without effect

• When using Pearl’s rule with a uniform likelihood, the
beliefs do not change,
i.e. improving with no information has no effect.

• When using Jeffrey’s rule with the current belief, the beliefs
do not change,
i.e. correcting beliefs to the current belief has no effect.
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Pearl’s rule increases validity

Theorem
Let 𝑐 ∶ 𝑋 ⟶•∘ 𝑌 be a channel with prior state 𝜎 ∈ 𝒟(𝑋) and let
𝑞 ∶ 𝑌 → [0, 1] be a predicate. Let 𝜎𝑃 = 𝜎|𝑐≪𝑞 denotes Pearl’s
update. Pearl’s rule increases validity:

(𝑐 ≫ 𝜎𝑃) ⊨ 𝑞 ≥ (𝑐 ≫ 𝜎) ⊨ 𝑞.
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Pearl’s rule increases validity

Lemma
Let 𝜔 ∈ 𝒟(𝑋) be a state and let 𝑝∶ 𝑋 → [0, 1] be a predicate.
Assume that 𝜔 ⊨ 𝑝 is nonzero. Then

𝜔|𝑝 ⊨ 𝑝 ≥ 𝜔 ⊨ 𝑝.

Proof. Recall that 𝜔 ⊨ 𝑝 = ∑𝑥 𝜔(𝑥)𝑝(𝑥) and 𝜔|𝑝(𝑥) = 𝜔(𝑥)𝑝(𝑥)
𝜔 ⊨ 𝑝 .

Hence, 𝜔|𝑝 ⊨ 𝑝 = ∑𝑥
𝜔(𝑥)𝑝(𝑥)

𝜔 ⊨ 𝑝 𝑝(𝑥) = 1
𝜔 ⊨ 𝑝 ∑𝑥 𝜔(𝑥)𝑝(𝑥)2. So it is

sufficient to show that

(∑
𝑥

𝜔(𝑥)(𝑝(𝑥))2) ≥ (𝜔 ⊨ 𝑝)2 = (∑
𝑥

𝜔(𝑥)𝑝(𝑥))
2

.
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Pearl’s rule increases validity

Lemma
Let 𝜔 ∈ 𝒟(𝑋) be a state and let 𝑝∶ 𝑋 → [0, 1] be a predicate.
Assume that 𝜔 ⊨ 𝑝 is nonzero. Then

𝜔|𝑝 ⊨ 𝑝 ≥ 𝜔 ⊨ 𝑝.

Proof. The Cauchy-Schwarz inequality states that
(∑𝑖 𝑦2

𝑖 ) (∑𝑖 𝑧2
𝑖 ) ≥ (∑𝑖 𝑦𝑖𝑧𝑖)

2
. Let 𝑦𝑖 = √𝜔(𝑥)𝑝(𝑥) and

𝑧𝑖 = √𝜔(𝑥). Then

(∑
𝑥

𝜔(𝑥)(𝑝(𝑥))2) (∑
𝑥

𝜔(𝑥))
⏟⏟⏟⏟⏟

=1

≥ (∑
𝑥

𝜔(𝑥)𝑝(𝑥))
2

.
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Pearl’s rule increases validity

Theorem
Let 𝑐 ∶ 𝑋 ⟶•∘ 𝑌 be a channel with prior state 𝜎 ∈ 𝒟(𝑋) and let
𝑞 ∶ 𝑌 → [0, 1] be a predicate. Let 𝜎𝑃 = 𝜎|𝑐≪𝑞 denotes Pearl’s
update. Pearl’s rule increases validity:

(𝑐 ≫ 𝜎𝑃) ⊨ 𝑞 ≥ (𝑐 ≫ 𝜎) ⊨ 𝑞.

Proof. For any state 𝜔 we have (𝑐 ≫ 𝜔) ⊨ 𝑞 = 𝜔 ⊨ (𝑐 ≪ 𝑞). By
the lemma, it follows that

(𝑐 ≫ (𝜎|𝑐≪𝑞)) ⊨ 𝑞 = 𝜎|𝑐≪𝑞 ⊨ (𝑐 ≪ 𝑞)
≥ 𝜎 ⊨ (𝑐 ≪ 𝑞) = (𝑐 ≫ 𝜎) ⊨ 𝑞.
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Jeffrey’s rule decreases KL-divergence

Definition (Kullback-Leibler divergence)
Let 𝜔, 𝜌 ∈ 𝒟(𝑋). The KL divergence 𝐷𝐾𝐿(𝜔, 𝜌) is defined as

𝐷𝐾𝐿(𝜔, 𝜌) = ∑
𝑥

𝜔(𝑥) ln (𝜔(𝑥)
𝜌(𝑥)

) .

• 𝐷𝐾𝐿(𝜔, 𝜌) ≥ 0 and 𝐷𝐾𝐿(𝜔, 𝜌) = 0 if and only if 𝜔 = 𝜌.
• The KL divergence is not symmetric, i.e. in general

𝐷𝐾𝐿(𝜔, 𝜌) ≠ 𝐷𝐾𝐿(𝜌, 𝜔).
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Jeffrey’s rule decreases KL-divergence

Theorem
Let 𝑐 ∶ 𝑋 ⟶•∘ 𝑌 be a channel with prior state 𝜎 ∈ 𝒟(𝑋). Assume
that 𝑌 is finite and that 𝑐 ≫ 𝜎 has full support. Let 𝜏 ∈ 𝒟(𝑌 ) be
an evidence state, and let 𝜎𝐽 = 𝑐†

𝜎 ≫ 𝜏 denote Jeffrey’s update.
Jeffrey’s rule decreases divergence:

𝐷𝐾𝐿(𝜏, 𝑐 ≫ 𝜎𝐽) ≤ 𝐷𝐾𝐿(𝜏, 𝑐 ≫ 𝜎).
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Open questions

• Are there other measures which always increase or
decrease when doing an update according to Pearl’s rule or
Jeffrey’s rule?

• What to do when evidence takes some, but not all other
information into account?

• What does soft evidence actually mean?
• Is there a cognitive difference between ’improvement’ and
’correction’?
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Conclusion

• Pearl’s rule: improvement
Evidence type: ‘nothing else considered’.

• Jeffrey’s rule: correction
Evidence type: ‘all things considered’.

• Pearl’s rule increases validity of the updating predicate.
• Jeffrey’s rule decreases divergence with the updating state.
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