
Generating low-level code from
high-level code for fast & verified
programs
MFoCS seminar - 24/01/2023 - by Aron van Hof

Why is this relevant?

- Need for both safety and performance in e.g. cryptography
- Weighing safety of high-level code against performance of low-level code
- Solution: write (verified) high-level code and (high-performance) low-level

code and manually prove they are equivalent
- However, this is tedious, an automated process would be preferred
- Today we will see 2 different approaches that try to bridge this gap by

compiling high-level code to low-level code

Introduction 2

Paper 1:

Relational compilation for performance-critical applications: extensible
proof-producing translation of functional models into low-level code.
By: Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen & Adam
Chlipala

In: PLDI 2022

3Introduction

https://dl.acm.org/doi/proceedings/10.1145/3519939

Paper 2:

Verified low-level programming embedded in F*.
By: Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina
Ramananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-Lavaud,
Cătălin Hriţcu, Karthikeyan Bhargavan, Cédric Fournet & Nikhil Swamy

In: ICFP 2017

4Introduction

Paper 1: Relational compilation for performance-critical
applications: extensible proof-producing translation of
functional models into low-level code

5

Outline paper 1

- Relational compilation
- Rupicola & the compilation pipeline
- Performance evaluation
- Limitations

6

Relational compilation (1)

- Given a source language S and target language T
- Traditional compilation: universal function f : S → T that preserves semantics

- Relational compilation: break f into separate lemmas to try to find
semantically equivalent programs t and s, denoted t ~ s

Source
Program s

Target
Program t

function f : S → T

lemma 1

lemma n
…

7Relational compilation

Part of s
Part of s
Part of s

Part of t
Part of t
Part of t

Example

- Source language S describing arithmetic expressions:

- Target language T describing stack operations push & popadd:

8Relational compilation

Inductive S := SInt z | SAdd (s1 s2 : S).

Inductive T_Op := TPush z | TPopAdd.
Definition T := list T_Op.

Example

- Source language S describing arithmetic expressions:

- Target language T describing stack operations push & popadd:

- Define evaluation functions 𝝈S & 𝝈T:

9Relational compilation

Inductive S := SInt z | SAdd (s1 s2 : S).

Inductive T_Op := TPush z | TPopAdd.
Definition T := list T_Op.

𝝈S : S → ℤ
𝝈T : T → list ℤ → list ℤ

Example

- Source language S describing arithmetic expressions:

- Target language T describing stack operations push & popadd:

- Define evaluation functions 𝝈S & 𝝈T:

- t ~ s if they evaluate to the same result for each initial stack:

10Relational compilation

Inductive S := SInt z | SAdd (s1 s2 : S).

Inductive T_Op := TPush z | TPopAdd.
Definition T := list T_Op.

𝝈S : S → ℤ
𝝈T : T → list ℤ → list ℤ

∀ zs, 𝝈T t zs = 𝝈S s :: zs

Example: ordinary compilation

- Ordinary compilation as a single pass through the language instance, e.g.:

Fixpoint StoT (s : S) := match s with
 | SInt z ⇒ [TPush z]
 | SAdd s1 s2 ⇒ StoT s1 ++ StoT s2 ++ [TPopAdd]
end.

Lemma StoT_ok : ∀ s, StoT s ~ s. Proof. … Qed.

11Relational compilation

Example: as lemmas

- Introduce a lemma for each relation:

12Relational compilation

Lemma StoT_SInt z := [TPush z] ~ SInt z.
Lemma StoT_Plus t1 s1 t2 s2:
 t1 ~ s1 → t2 ~ s2 →
 t1 ++ t2 ++ [TPopAdd] ~ SAdd s1 s2.

Example: a simple source language program

- Example program s7 of language S, need to find t7:

- We use Compute to get the proof term after the proof has completed:

Example s7 := SAdd (SInt 3) (SInt 4).
Example t7_rel: { t7 | t7 ~ s7 }.

13Relational compilation

Lemma.
…
Defined.

Compute t7_rel.

Example: using lemmas to find target program

Proof steps: Proof tree steps:

{ t7 | t7 ~ s7}

14Relational compilation

Example: using lemmas to find target program

Proof steps: Proof tree steps:

unfold s7.

{ t7 | t7 ~ s7}

15Relational compilation

Example: using lemmas to find target program

Proof steps: Proof tree steps:

unfold s7.

{ t7 | t7 ~ s7}

{ t7 | t7 ~ SAdd (SInt 3) (SInt 4)}

16Relational compilation

Example: using lemmas to find target program

Proof steps: Proof tree steps:

unfold s7.

eexists.

{ t7 | t7 ~ s7}

{ t7 | t7 ~ SAdd (SInt 3) (SInt 4)}

?t7 ~ SAdd (SInt 3) (SInt 4)}

17Relational compilation

Example: using lemmas to find target program

Proof steps: Proof tree steps:

unfold s7.

eexists.

{ t7 | t7 ~ s7}

?t7 ~ SAdd (SInt 3) (SInt 4)

{ t7 | t7 ~ SAdd (SInt 3) (SInt 4)}

?t7 ~ SAdd (SInt 3) (SInt 4)}

18Relational compilation

Example: using lemmas to find target program

Proof steps: Proof tree steps:

?t7 ~ SAdd (SInt 3) (SInt 4)

19Relational compilation

Example: using lemmas to find target program

Proof steps: Proof tree steps:

?t7 ~ SAdd (SInt 3) (SInt 4)

20Relational compilation

Lemma StoT_SInt z := [TPush z] ~ SInt z.
Lemma StoT_Plus t1 s1 t2 s2:
 t1 ~ s1 → t2 ~ s2 →
 t1 ++ t2 ++ [TPopAdd] ~ SAdd s1 s2.

Example: using lemmas to find target program

Proof steps: Proof tree steps:

 apply StoT_Plus.

?t1 ~ SInt 3 ?t2 ~ SInt 4

?t7 ~ SAdd (SInt 3) (SInt 4)

21Relational compilation

Example: using lemmas to find target program

Proof steps: Proof tree steps:

 apply StoT_Plus.

?t1 ~ SInt 3 ?t2 ~ SInt 4

?t1 ~ SInt 3 ?t2 ~ SInt 4

?t7 ~ SAdd (SInt 3) (SInt 4)

22Relational compilation

Example: using lemmas to find target program

Proof steps: Proof tree steps:

?t1 ~ SInt 3 ?t2 ~ SInt 4

23Relational compilation

Example: using lemmas to find target program

Proof steps: Proof tree steps:

?t1 ~ SInt 3 ?t2 ~ SInt 4

24Relational compilation

Lemma StoT_SInt z := [TPush z] ~ SInt z.
Lemma StoT_Plus t1 s1 t2 s2:
 t1 ~ s1 → t2 ~ s2 →
 t1 ++ t2 ++ [TPopAdd] ~ SAdd s1 s2.

Example: using lemmas to find target program

Proof steps: Proof tree steps:

all: apply StoT_SInt. Defined.

?t1 ~ SInt 3 ?t2 ~ SInt 4

TPush 3 ~ SInt 3 TPush 4 ~ SInt 4

25Relational compilation

Example: using lemmas to find target program

Proof steps: Proof tree steps:

all: apply StoT_SInt. Defined.

Compute t7_rel.

= exist [TPush 3; TPush 4; TPopAdd]

?t1 ~ SInt 3 ?t2 ~ SInt 4

TPush 3 ~ SInt 3 TPush 4 ~ SInt 4

26Relational compilation

Relational compilation (2)

- We used lemmas to prove the existence of a target program
- Use Coq’s automatic proof search for finding a program of the target

language using the lemmas
- Soundness, but no completeness
- TL;DR: a relational compiler is a collection of lemmas on semantic

equivalences that can connect a source program to a target program

27Relational compilation

Relational compilation (3)

- What about compiling Coq code itself?
- A traditional compiler written in Coq cannot find an input type when the

source language is Coq itself
- This is possible using relational compilation
- So relational compilation allows building a compiler for Coq within Coq itself!

28Relational compilation

Introducing Rupicola

- Rupicola: compiler-construction toolkit for compiling Coq to Bedrock2
(language similar to C)

- Implements idea of relational compilation by using proven lemmas to compile
to the target language

- Users provide lemmas if a particular semantic equivalence has not yet been
established

- Thus it is construction toolkit, rather than a general compiler itself

29Rupicola & the compilation pipeline

Compilation pipeline

Coq code Bedrock2
code C code RISC-V

code

Legend

Annotated
implementation

High-level
specifications

Low-level
imperative code

Low-level
imperative code

Low-level
imperative code

manually
verified

compiled
with
Rupicola

pretty-printed

verified
compilation

30Rupicola & the compilation pipeline

Example: upstring

- Specification:

- Annotated implementation:

- Transformations:

- In place mutation

- For-loop rather than higher-order iteration

- Different representation of strings

𝛌s → String.map toupper s

𝛌s → let/n s := ListArray.map(𝛌b → a2b (toupper b2a b))) s in s

31Rupicola & the compilation pipeline

Example: upstring

- Generated C code:

void upstr(uintptr_t as, uintptr_t len) {
 char *s = (char*s) as; int l = len;
 for (int pos = 0; pos < l; pos++) {
 s[pos] = (((unsigned)s[pos] - ‘a’) & 0xff) < 26 ? s[pos] & 0x5f : s[pos];
 }
}

32Rupicola & the compilation pipeline

Compiling with Rupicola

- Asks user to provide help when compilation initially fails
- A lemma can then be given, using a Hoare triple of the form:

State Predicate on
Coq code

Bedrock2 code

33Rupicola & the compilation pipeline

Performance evaluation

-

34Performance evaluation

Limitations

- Expertise in Coq, Bedrock2 and Rupicola needed
- Not all low-level patterns translate well to functional models
- There may still be bugs somewhere in the trusted computing base: Coq’s

proof checker & the pretty-printer from Bedrock2 to C

35Limitations

Paper 2: Verified low-level programming embedded in F*

36

Outline paper 2

- F* & Low*
- The KaRaMeL compiler
- Modelling C in Low*
- Example: ChaCha20
- Performance evaluation
- Limitations

37

Introducing F*

- High-level functional language like Coq
- Supports dependent typing, user-defined monads & refined types
- Can also take the role of proof assistant through Coq-like tactics & automated

proof search
- The F* ecosystem contains several Domain Specific Languages that each

seek to fulfill a particular role, e.g. Low*, Steel, etc.
- This makes it more of a general purpose language than Coq

38F* & Low*

Introducing Low*

- Low* is a shallow embedding of (a subset of) C in F*
- Simulates C’s memory model, arrays, etc.

- Compiled to C using the KaRaMeL compiler
- Some type syntax: Tot & Ghost

F* CLow*

39F* & Low*

The compilation process

40The KaRaMeL compiler

The compilation process: 𝝀ow*

- 𝛌ow*: establishes formal core of Low*
- Erases specifications & proofs

Low*

𝛌ow*

41The KaRaMeL compiler

The compilation process: C*

- C*: intermediate language between 𝛌ow* & Clight
- Syntax becomes more C-like
- Switches calling convention to explicitly push frame

𝛌ow*

C*

42The KaRaMeL compiler

The compilation process: Clight

- Clight: deterministic subset of C
- Hoists local variables
- Source language for CompCert
- Or use pretty-printer to C

C*

Clight

43The KaRaMeL compiler

Modeling C: memory model

- Start off by adding state through the F* state monad:

- Essentially represents a function:

- Next we instantiate s with Hyperstack.mem

ST (a:Type) (requires pre: s → Type) (ensures post: s → a → s → Type)

m0:s → (r:a, m1:s)

44Modelling C in Low*

Memory model: hyper-stacks

- A hyper-stack partitions memory intro regions
- Each region has its own id and a predicate stating whether it is a stack or a

heap region
- One stack region, root, outlives the other regions
- In code specification:

type rid
val is_stack_region: rid → Tot bool
type sid = r:rid{is_stack_region r}
type hid = r:rid{¬(is_stack_region r)}
val root: sid

45Modelling C in Low*

Memory model: references

- Partial signature of the model:

46

type ref : Type → Type
val region_of: ref a → Ghost rid
val _∈_ : ref a → mem → Tot Type
val _ [_] : ref a → mem → Ghost a
val _ [_] ← _ : mem → ref a → a → Ghost mem

Modelling C in Low*

Example: ChaCha20

- Stream cipher for symmetric encryption;
- Computes pseudo-random block of bytes to encrypt
- We will see the Low* & C version

47Example: ChaCha20

Example: ChaCha20

48

let chacha20
 (len: uint32{len ≤ blocklen})
 (output: bytes{len = output.length})
 …
 = …

void chacha20(
 uint32_t len,
 uint8_t ∗output,
 uint8_t ∗key,
 uint8_t ∗nonce,
 uint32_t counter)
 {
 …
 }

Example: ChaCha20

Example: ChaCha20

49

let chacha20
 (len: uint32{len ≤ blocklen})
 (output: bytes{len = output.length})
 …
 : Stack unit
 (requires (𝛌m0 → output ∈ m0 ∧ key ∈ m0 ∧
 nonce ∈ m0))
 (ensures (𝛌m0 _ m1 → modifies output m0 m1
 ∧ m1[output] ==
 Seq.prefix len(Spec.chacha20 m0[key]
 m0[nonce]) counter))) = …

void chacha20(
 uint32_t len,
 uint8_t ∗output,
 uint8_t ∗key,
 uint8_t ∗nonce,
 uint32_t counter)
 {
 …
 }

Example: ChaCha20

Example: ChaCha20

50

let chacha20
 (len: uint32{len ≤ blocklen})
 (output: bytes{len = output.length})
 …
 : Stack unit
 (requires (𝛌m0 → output ∈ m0 ∧ key ∈ m0 ∧
 nonce ∈ m0))
 (ensures (𝛌m0 _ m1 → modifies output m0 m1
 ∧ m1[output] ==
 Seq.prefix len(Spec.chacha20 m0[key]
 m0[nonce]) counter))) =
push_frame ();
let state = Buffer.create 0ul 32ul in
let block = Buffer.sub state 16ul 16ul in
chacha20_init block key nonce counter;
chacha20_update output state len;
pop_frame ()

void chacha20(
 uint32_t len,
 uint8_t ∗output,
 uint8_t ∗key,
 uint8_t ∗nonce,
 uint32_t counter)
 {

 uint32_t state[32] = { 0 };
 uint32_t ∗block = state + 16;
 chacha20_init(block, key, nonce, counter);
 chacha20_update(output, state, len);
 }

Example: ChaCha20

Performance evaluation

- High-assurance cryptographic library (HACL) for cryptographic primitives to
test performance of C code generated by Low* & KaRaMeL in real-world
setting

- Based on the NaCl API has characteristics like:

- Only supports modern algorithms

- Exposes general functions for certain functionality rather than specific
algorithms

51Performance evaluation

HACL* performance comparison

Algorithm HACL* Sodium TweetNaCL OpenSSL eBACS fastest

ChaCha20 6.17 cy/B 6.97 cy/B - 8.04 cy/B 1.23 cy/B

Salsa20 6.34 cy/B 8.44 cy/B 15.14 cy/B - 1.39 cy/B

Poly1305 2.07 cy/B 2.48 cy/B 32.32 cy/B 2.16 cy/B 0.68 cy/B

Curve25519 157k cy/mul 162k cy/mul 1663k cy/mul 359k cy/mul 145 cy/mul

AEAD-ChaCha20-
poly1305

8.37 cy/B 9.60 cy/B - 8.53 cy/B -

SecretBox 8.43 cy/B 11.03 cy/B 50.56 cy/B - -

Box 18.10 cy/B 20.97 cy/B 149.22 cy/B - -

52Performance evaluation

Limitations

- Requires an understanding of F* and Low* languages as well as knowledge of
low-level programming in C to utilize Low*

- Trusted Computing Base including F* type checking algorithm, the Z3 SMT
solver used by F* and the KaRaMeL compiler

53Limitations

Conclusion

54

Summary of similarities & differences
Rupicola Low*

Programming to be done Specification, annotated
implementation and lemmas
in high-level language Coq
using Rupicola tool kit

Performance-critical parts
in DSL Low* and proofs,
specifications, etc. in
high-level language F*

Compilation Relational compilation from
using Rupicola

Traditional compilation
using separate program
KaRaMeL

Correctness Uses Coq proofs/typing,
compilation is guaranteed to
be sound

Uses F* proofs/typing

Trusted Computing Base Coq and pretty-printer to C F*, Z3 SMT solver &
KaRaMeL

55Conclusion

Q&A

Ask away!

56Q&A

Example: formal definitions

- Language definitions:

- Example definition of 𝝈S:

- Then t ~ s holds when:

Inductive S := SInt z | SAdd (s1 s2 : S).
Inductive T_Op := TPush z | TPopAdd.
Definition T := list T_op.

Fixpoint 𝝈S (s : S) :=
 match s with
 | SInt z ⇒ z
 | SAdd s1 s2 ⇒ 𝝈S s1 + 𝝈S s2 end.

∀ zs, 𝝈T t zs = 𝝈S s :: zs

57Relation compilation

Example

- Source language S describing arithmetic expressions
- Target language T describing stack operations push & popadd
- Define valuation functions 𝝈S & 𝝈T that map their operations to operations on 𝕫:

- t ~ s if they evaluate to the same result for each initial stack zs:

PopAdd SAdd

𝝈T t zs 𝝈S s :: zs

+

Output list

58Relation compilation

Low* restrictions

 The code must:

- be first order to avoid allocating closures
- make heap allocations explicit
- not use recursive datatypes
- be monomorphic

59F* & Low*

Example: Dereferencing in heap

- Defining an operator ! for getting the value of the reference:

- Note how these F* features help guarantee correctness!

60Modelling C in Low*

val (!): x:ref a → ST a (requires (𝝀m → x∈m)) (ensures (𝝀m0 y m1 → m0 = m1 ⋀ y = m1[x]))

Modelling C: arrays

- Introduce a buffer type:

61Modelling C in Low*

