Generating low-level code from
high-level code for fast & verified
programs

MFoCS seminar - 24/01/2023 - by Aron van Hof

Why is this relevant?

- Need for both safety and performance in e.g. cryptography

- Weighing safety of high-level code against performance of low-level code

- Solution: write (verified) high-level code and (high-performance) low-level
code and manually prove they are equivalent

- However, this is tedious, an automated process would be preferred

- Today we will see 2 different approaches that try to bridge this gap by
compiling high-level code to low-level code

Introduction

Paper 1.

Relational compilation for performance-critical applications: extensible
proof-producing translation of functional models into low-level code.
By: Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen & Adam

Chlipala

In: PLDI 2022

Introduction

https://dl.acm.org/doi/proceedings/10.1145/3519939

Paper 2.

Verified low-level programming embedded in F*.

By: Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina
Ramananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-Lavaud,
Catalin Hritcu, Karthikeyan Bhargavan, Cédric Fournet & Nikhil Swamy

In: ICFP 2017

Introduction

4
N

Paper 1: Relational compilation for performance-critical
applications: extensible proof-producing translation of
functional models into low-level code

Outline paper 1

- Relational compilation

- Rupicola & the compilation pipeline
- Performance evaluation

- Limitations

Relational compilation (1)

- Given a source language S and target language T
- Traditional compilation: universal function f : S — T that preserves semantics

Source W functionf:S—>T (Target
Program s J L Program t

- Relational compilation: break f into separate lemmas to try to find
semantically equivalent programs t and s, denoted t ~ s

lemma 1 ,
| Partofs | { Partoft |
[Part of s } Iem-r-ﬁa - \ Part of t]
[Part of s } [Part of t]

Relational compilation

Example

- Source language S describing arithmetic expressions:

[Inductive S := SInt z | SAdd (s1 s2: S). }

- Target language T describing stack operations push & popadd:

Inductive T_Op := TPush z | TPopAdd.
Definition T := list T_Op.

Relational compilation

Example

- Source language S describing arithmetic expressions:

[Inductive S := SInt z | SAdd (s1 s2: S). }

- Target language T describing stack operations push & popadd:

(Inductive T_Op :=TPush z | TPopAdd.
Deﬁnltlon T :=list T_Op.

- Deﬁne evaluation functions ¢S & ol:

N
GSIS—> Z
\O’TIT—)“StZ—)“StZ

Relational compilation

Example

Source language S describing arithmetic expressions:

[Inductive S := SInt z | SAdd (s1 s2: S). }

Target language T describing stack operations push & popadd:

(Inductive T_Op :=TPush z | TPopAdd.
Deﬁnltlon T :=list T_Op.

- Deﬁne evaluation functions ¢S & ol:

N
GSIS—> Z
\O’TIT—)“StZ—)“StZ)

-t~ sif they evaluate to the same result for each initial stack:

(N

V 75,06Ttzs=0Ss::zs

- J

Relational compilation

Example: ordinary compilation

- Ordinary compilation as a single pass through the language instance, e.qg.:

fFixpoint StoT (s : S) := match s with)
| Sint z = [TPush Z]
| SAdd s1 s2 = StoT s1 ++ StoT s2 ++ [TPopAdd]
end.
kLemma StoT_ok : V s, StoT s ~ s. Proof. ... Qed. j

Relational compilation

Example: as lemmas

- Introduce a lemma for each relation:

Lemma StoT_SInt z := [TPush z] ~ SInt z.
Lemma StoT_Plus t1 s1 12 s2:

t1~s1 >12~s82 —

t1 ++ t2 ++ [TPopAdd] ~ SAdd s1 s2.

Relational compilation

Example: a simple source language program

- Example program s7 of language S, need to find t7:

Example s7 := SAdd (SInt 3) (Sint 4).
Example t7_rel: {17 | t7 ~ s7 }.

- We use Compute to get the proof term after the proof has completed:

KLemma. \
Beﬁned.
Compute t7_rel.

o J

Relational compilation

Example: using lemmas to find target program

Proof steps:

-

~

Relational compilation

Proof tree steps:

-~

[{t7|t7~s7}] \

Example: using lemmas to find target program

Proof steps:

-

unfold s7.

-

~

Relational compilation

Proof tree steps:

-~

[{t7|t7~s7}] \

Example: using lemmas to find target program

Proof steps:

-

unfold s7.

-

~

Relational compilation

Proof tree steps:

-~

-

[{t7|t7~s7}]

[{t7 |17 ~ SAdd (SInt 3) (Sint 4)} }

~

Example: using lemmas to find target program

Proof steps:

-

unfold s7.

eexists.

-

~

Relational compilation

Proof tree steps:

-~

-

[{t7|t7~s7}] \

[{t7 |17 ~ SAdd (SInt 3) (Sint 4)} }

[?t7 ~ SAdd (SInt 3) (SInt 4)} }

Example: using lemmas to find target program

Proof steps:

-

unfold s7.

eexists.

~

\’?'{7 ~ SAdd (SInt 3) (SInt 4)

Relational compilation

Proof tree steps:

-~

-

[{t7|t7~s7}] \

[{t7 |17 ~ SAdd (SInt 3) (Sint 4)} }

[?t7 ~ SAdd (SInt 3) (SInt 4)} }

Example: using lemmas to find target program

Proof steps:

-

~

Relational compilation

Proof tree steps:

/ | 717 ~ SAdd (SInt 3) (Sint 4)

])

Example: using lemmas to find target program

Proof steps:

Proof tree steps:

-

\ / | 717 ~ SAdd (SInt 3) (Sint 4)] \

Lemma StoT_SInt 7 := [TPush z] ~ Sint z.
Lemma StoT_Plus t1 s1 12 s2:

t1~s81 >12~82 —

t1 ++ t2 ++ [TPopAdd] ~ SAdd s1 s2.

N

Relational compilation

Example: using lemmas to find target program

Proof steps:

-

apply StoT_Plus.

-

~

Relational compilation

Proof tree steps:

-~

-

| 717 ~ SAdd (SInt 3) (Sint 4)

])

N

[?t'] ~ SInt 3] [?t2~SInt4

J

Example: using lemmas to find target program

Proof steps:

-

apply StoT_Plus.

~

?t1 ~ SInt 3

712 ~ Sint 4

-

/

Relational compilation

Proof tree steps:

-~

-

| 717 ~ SAdd (SInt 3) (Sint 4)

])

N

[?t'] ~ SInt 3] [?t2~SInt4

J

Example: using lemmas to find target program

Proof steps:

-

~

Relational compilation

Proof tree steps:

-~

~

[?t1 ~ SInt 3

| (e-sma

=

Example: using lemmas to find target program

Proof steps:

Proof tree steps:

-

N

[?t1 ~ SInt 3

]

Lemma StoT_SInt 7 := [TPush z] ~ Sint z.
Lemma StoT_Plus t1 s1 12 s2:

t1~s81 >12~82 —

t1 ++ t2 ++ [TPopAdd] ~ SAdd s1 s2.

N

Relational compilation

~

[?t2~SInt4]

Example: using lemmas to find target program

Proof steps:

-

all: apply StoT_SInt. Defined.

-

~

Relational compilation

Proof tree steps:

-~

[?t1 ~ SInt 3]

[TPush 3~SInt3 }

=

~

[?t2~SInt4]

[TPush 4 ~ Sint4 }

Example: using lemmas to find target program

Proof steps: Proof tree steps:

4 N N

[?t‘l ~ SInt 3] [?t2~SInt4]

all: apply StoT_SInt. Defined.

[TPush 3 ~Slnt3} [TPush4~SInt4}

Compute t7_rel.

(exist [TPush 3; TPush 4; TPopAdd] / \

Relational compilation

Relational compilation (2)

- We used lemmas to prove the existence of a target program

- Use Coq's automatic proof search for finding a program of the target
language using the lemmas

- Soundness, but no completeness

- TL;DR: a relational compiler is a collection of lemmas on semantic
equivalences that can connect a source program to a target program

Relational compilation

Relational compilation (3)

- What about compiling Coq code itself?

- Atraditional compiler written in Coq cannot find an input type when the
source language is Coq itself

- This is possible using relational compilation

- So relational compilation allows building a compiler for Coq within Coq itself!

Relational compilation

Introducing Rupicola

- Rupicola: compiler-construction toolkit for compiling Coq to Bedrock?2
(language similar to C)

- Implements idea of relational compilation by using proven lemmas to compile
to the target language

- Users provide lemmas if a particular semantic equivalence has not yet been

established
- Thus it is construction toolkit, rather than a general compiler itself

Rupicola & the compilation pipeline

Compilation pipeline

[Coq code] Bedrock?2 C code RISC-V
code code

Low-level

tty-printed . .
pretly-printe imperative code

High-level manually Annotated compiled | Low-level
specifications verified implementation with imperative code
Rupicola
_

verified
compilation

Low-level
imperative code

Rupicola & the compilation pipeline

Example: upstring

- Specification:

[As — String.map toupper s }

- Annotated implementation:

[As — let/n s := ListArray.map(Ab — a2b (toupper b2a b))) sin s]

- Transformations:

- In place mutation

- For-loop rather than higher-order iteration

- Different representation of strings

Rupicola & the compilation pipeline

Example: upstring

- Generated C code;

void upstr(uintptr_t as, uintptr_t len) {
char *s = (char*s) as; int | = len;
for (int pos = 0; pos < [; pos++) {
s[pos] = (((unsigned)s[pos] - ‘a’) & 0xff) < 26 ? s[pos] & 0x5f : s[pos];
}

N

/

Rupicola & the compilation pipeline

Compiling with Rupicola

- Asks user to provide help when compilation initially fails
- Alemma can then be given, using a Hoare triple of the form:

W Bedrock?2 code Predicate on
State g
J Coq code

Rupicola & the compilation pipeline

Performance evaluation

fnvla

Rupicola GCC 10.3
Rupicola GCC 11.1
Rupicola Clang 13.0
C GCC 10.3

€ GCC 11.1

C Clang 13.0

I T T T T

0 2 4 6 8
Cycles per byte (IMiB input, lower is better)

Performance evaluation

Limitations

- Expertise in Coq, Bedrock2 and Rupicola needed

- Not all low-level patterns translate well to functional models

- There may still be bugs somewhere in the trusted computing base: Coq's
proof checker & the pretty-printer from Bedrock2 to C

4
N

Paper 2: Verified low-level programming embedded in F*

36

Outline paper 2

- F*& Low*

- The KaRaMeL compiler
- Modelling C in Low*

- Example: ChaCha20

- Performance evaluation
- Limitations

Introducing F*

- High-level functional language like Coq

- Supports dependent typing, user-defined monads & refined types

- Can also take the role of proof assistant through Cog-like tactics & automated
proof search

- The F* ecosystem contains several Domain Specific Languages that each
seek to fulfill a particular role, e.g. Low*, Steel, etc.

- This makes it more of a general purpose language than Coq

Introducing Low*

Low* is a shallow embedding of (a subset of) C in F*
Simulates C's memory model, arrays, etc.

Compiled to C using the KaRaMeL compiler
Some type syntax: Tot & Ghost

The compilation process

The KaRaMeL compiler

Low* J l
[KaRaMel compilation passes l
Clight J<— cC* —{ Aow*
> (i

The compilation process: Aow*

- how*: establishes formal core of Low* Low*
- Erases specifications & proofs

AOW*

The KaRaMeL compiler

The compilation process: C*

- C*.intermediate language between how* & Clight how*
- Syntax becomes more C-like
- Switches calling convention to explicitly push frame

C*

The KaRaMeL compiler

The compilation process: Clight

- Clight: deterministic subset of C c
- Hoists local variables
- Source language for CompCert
- Or use pretty-printerto C
Clight

The KaRaMeL compiler

Modeling C. memory model

- Start off by adding state through the F* state monad:

[ST (a:Type) (requires pre: s — Type) (ensures post: s — a — s — Type) }

- Essentially represents a function:

[mO0:s — (r:a, m1:s) }
- Next we instantiate s with Hyperstack.mem

Modelling C in Low*

Memory model: hyper-stacks

- A hyper-stack partitions memory intro regions

- Eachregion has its own id and a predicate stating whether it is a stack or a
heap region

- One stack region, root, outlives the other regions

- In code specification:

a N

type rid

val is_stack_region: rid — Tot bool
type sid = r:rid{is_stack_region r}
type hid = r:rid{-(is_stack_region r)}
val root: sid

_ /

Modelling C in Low*

Memory model: references

- Partial signature of the model:

-

type ref : Type — Type

val region_of: ref a — Ghost rid

val _&_:ref a— mem — Tot Type

val _[]:refa— mem — Ghost a

val _[] « _: mem — ref a —» a — Ghost mem

"

/

Modelling C in Low*

Example: ChaCha20

- Stream cipher for symmetric encryption;
- Computes pseudo-random block of bytes to encrypt
- We will see the Low* & C version

Example: ChaCha20

Example: ChaCha20

e

let chacha20 void chacha20(
(len: uint32{len = blocklen}) uint32_t len,
(output: bytes{len = output.length}) uint8_t *output,
uint8_t *key,

= ... uint8_t *knonce,
uint32_t counter)

{
.

Example: ChaCha20

Example: ChaCha20

let chacha20
(len: uint32{len = blocklen})
(output: bytes{len = output.length})

: Stack unit
(requires (Mn0 — output € m0 A key € m0 A
nonce € m0))
(ensures (Mn0 _m1 — modifies output m0 m1
A m1[output] ==
Seq.prefix len(Spec.chacha20 mO[key]
mO[nonce]) counter))) = ...

Example: ChaCha20

e

void chacha20(
uint32_t len,
uint8_t *output,
uint8_t *key,
uint8_t *knonce,
uint32_t counter)

{
.

Example: ChaCha20

let chacha20
(len: uint32{len = blocklen})

(output: bytes{len = output.length})

: Stack unit
(requires (M0 — output € m0 A key € m0 A
nonce € m0))
(ensures (AmO0 _m1 — modifies output m0 m1
A m1[output] ==
Seq.prefix len(Spec.chacha20 mO[key]
mO[nonce]) counter))) =
push_frame ();
let state = Buffer.create Oul 32ul in
let block = Buffer.sub state 16ul 16ul in
chacha20_init block key nonce counter;

oid chacha20(

/

uint32_t len,

{

chacha20_update output state len;
pop_frame ()

Example: ChaCha20

uint8_t *output,
uint8_t *key,
uint8_t *knonce,
uint32_t counter)

uint32_t state[32] = {0 };

uint32_t *block = state + 16;
chacha20_init(block, key, nonce, counter);
chacha20_update(output, state, len);

Performance evaluation

- High-assurance cryptographic library (HACL) for cryptographic primitives to
test performance of C code generated by Low* & KaRaMeL in real-world

setting
- Based on the NaCl API has characteristics like:

- Only supports modern algorithms

- Exposes general functions for certain functionality rather than specific
algorithms

Performance evaluation

HACL* performance comparison

Algorithm HACL* Sodium TweetNaCL OpenSSL eBACS fastest

ChaCha20 6.17 cy/B 6.97 cy/B - 8.04 cy/B 1.23 cy/B
Salsa20 6.34 cy/B 8.44 cy/B 15.14 cy/B - 1.39 cy/B
Poly1305 2.07 cy/B 2.48 cy/B 32.32cy/B 2.16 cy/B 0.68 cy/B
Curve25519 157k cy/mul 162k cy/mul 1663k cy/mul 359k cy/mul 145 cy/mul
AEAD-ChaCha20- 8.37 cy/B 9.60 cy/B - 8.53 cy/B -

poly1305

SecretBox

8.43 cy/B

11.03 cy/B

50.56 cy/B

Box

18.10 cy/B

Performance evaluation

20.97 cy/B

149.22 cy/B

Limitations

- Requires an understanding of F* and Low* languages as well as knowledge of
low-level programming in C to utilize Low*

- Trusted Computing Base including F* type checking algorithm, the Z3 SMT
solver used by F* and the KaRaMeL compiler

Conclusion

Summary of similarities & differences

Rupicola

*

Low

Programming to be done

Specification, annotated
implementation and lemmas
in high-level language Coq
using Rupicola tool kit

Performance-critical parts
in DSL Low* and proofs,
specifications, etc. in
high-level language F*

Compilation Relational compilation from | Traditional compilation
using Rupicola using separate program
KaRaMeL
Correctness Uses Coq proofs/typing, Uses F* proofs/typing

compilation is guaranteed to
be sound

Trusted Computing Base

Coq and pretty-printer to C

F*, Z3 SMT solver &

KaRaMeL

Q&A

Ask away!

Example: formal definitions

. Inductive S := SInt z | SAdd (s1 s2: S).
- Language definitions: Inductive T_Op := TPush 7 | TPopAdd.
Definition T := list T_op.

Fixpoint 6S (s : S) =
. match s with
- Example definition of 6S: | SInt z .

| SAdd s1 s2 = ¢S s1+6S s2 end.

- Then't ~ s holds when: [v O — }

Relation compilation

Example

- Source language S describing arithmetic expressions
- Target language T describing stack operations push & popadd
- Define valuation functions ¢S & 6T that map their operations to operations on z:

PopAdd H + H SAdd

-t~ sif they evaluate to the same result for each initial stack zs:

oTtzs H Output list H 0S s :zs

Relation compilation

L ow* restrictions

The code must;

- be first order to avoid allocating closures
- make heap allocations explicit

- not use recursive datatypes

- be monomorphic

Example: Dereferencing in heap

- Defining an operator ! for getting the value of the reference:

[val ("): xref a — ST a (requires (Am — x&€m)) (ensures (Am0y m1 — m0 =m1 Ay =m1[x])) }

- Note how these F* features help guarantee correctness!

Modelling C in Low*

Modelling C: arrays

- Introduce a buffer type:

abstract type buffer a =
| MkBuffer: max_length:uint32
— content:ref (s:seq a{Seq.length s = max_length})
— idx:uint32

— length:uint32 {idx + length < max_length} — buffer a

Modelling C in Low*

