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Why is this relevant?

- Need for both safety and performance in e.g. cryptography
- Weighing safety of high-level code against performance of low-level code
- Solution: write (verified) high-level code and (high-performance) low-level 

code and manually prove they are equivalent
- However, this is tedious, an automated process would be preferred
- Today we will see 2 different approaches that try to bridge this gap by 

compiling high-level code to low-level code

Introduction 2



Paper 1:

Relational compilation for performance-critical applications: extensible 
proof-producing translation of functional models into low-level code. 
By: Clément Pit-Claudel, Jade Philipoom, Dustin Jamner, Andres Erbsen & Adam 
Chlipala

In: PLDI 2022

3Introduction

https://dl.acm.org/doi/proceedings/10.1145/3519939


Paper 2:

Verified low-level programming embedded in F*. 
By: Jonathan Protzenko, Jean-Karim Zinzindohoué, Aseem Rastogi, Tahina 
Ramananandro, Peng Wang, Santiago Zanella-Béguelin, Antoine Delignat-Lavaud, 
Cătălin Hriţcu, Karthikeyan Bhargavan, Cédric Fournet & Nikhil Swamy

In: ICFP 2017

4Introduction



Paper 1: Relational compilation for performance-critical 
applications: extensible proof-producing translation of 
functional models into low-level code
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Outline paper 1

- Relational compilation
- Rupicola & the compilation pipeline
- Performance evaluation
- Limitations
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Relational compilation (1)

- Given a source language S and target language T
- Traditional compilation: universal function f : S → T that preserves semantics

- Relational compilation: break f into separate lemmas to try to find 
semantically equivalent programs t and s, denoted t ~ s

Source 
Program s

Target 
Program t

function f : S → T

lemma 1

lemma n
…
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Part of s
Part of s
Part of s

Part of t
Part of t
Part of t



Example

- Source language S describing arithmetic expressions:

- Target language T describing stack operations push & popadd:

8Relational compilation

Inductive S := SInt z | SAdd (s1 s2 : S).

Inductive T_Op := TPush z | TPopAdd.
Definition T := list T_Op.



Example

- Source language S describing arithmetic expressions:

- Target language T describing stack operations push & popadd:

- Define evaluation functions 𝝈S & 𝝈T:
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Inductive S := SInt z | SAdd (s1 s2 : S).

Inductive T_Op := TPush z | TPopAdd.
Definition T := list T_Op.

𝝈S : S →  ℤ
𝝈T : T → list ℤ → list ℤ



Example

- Source language S describing arithmetic expressions:

- Target language T describing stack operations push & popadd:

- Define evaluation functions 𝝈S & 𝝈T:

- t ~ s if they evaluate to the same result for each initial stack:
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Inductive S := SInt z | SAdd (s1 s2 : S).

Inductive T_Op := TPush z | TPopAdd.
Definition T := list T_Op.

𝝈S : S →  ℤ
𝝈T : T → list ℤ → list ℤ

∀ zs, 𝝈T t zs = 𝝈S s :: zs



Example: ordinary compilation

- Ordinary compilation as a single pass through the language instance, e.g.:

Fixpoint StoT (s : S) := match s with
   | SInt z          ⇒ [TPush z]
   | SAdd s1 s2 ⇒ StoT s1 ++ StoT s2 ++ [TPopAdd]
end.

Lemma StoT_ok : ∀ s, StoT s ~ s. Proof. … Qed.
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Example: as lemmas

- Introduce a lemma for each relation:
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Lemma StoT_SInt z :=  [TPush z] ~ SInt z.
Lemma StoT_Plus t1 s1 t2 s2: 
   t1 ~ s1 → t2 ~ s2 →
   t1 ++ t2 ++ [TPopAdd] ~ SAdd s1 s2.



Example: a simple source language program

- Example program s7 of language S, need to find t7: 

- We use Compute to get the proof term after the proof has completed:

Example s7 :=  SAdd (SInt 3) (SInt 4).
Example t7_rel: { t7 | t7 ~ s7 }.
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Lemma.
…
Defined.

Compute t7_rel.



Example: using lemmas to find target program

Proof steps: Proof tree steps:

{ t7 | t7 ~ s7}
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Example: using lemmas to find target program

Proof steps: Proof tree steps:

unfold s7.

{ t7 | t7 ~ s7}
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Example: using lemmas to find target program

Proof steps: Proof tree steps:

unfold s7.

{ t7 | t7 ~ s7}

{ t7 | t7 ~ SAdd (SInt 3) (SInt 4)}
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Example: using lemmas to find target program

Proof steps: Proof tree steps:

unfold s7.

eexists.

{ t7 | t7 ~ s7}

{ t7 | t7 ~ SAdd (SInt 3) (SInt 4)}

?t7 ~ SAdd (SInt 3) (SInt 4)}
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Example: using lemmas to find target program

Proof steps: Proof tree steps:

unfold s7.

eexists.

{ t7 | t7 ~ s7}

?t7 ~ SAdd (SInt 3) (SInt 4)

{ t7 | t7 ~ SAdd (SInt 3) (SInt 4)}

?t7 ~ SAdd (SInt 3) (SInt 4)}
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Example: using lemmas to find target program

Proof steps: Proof tree steps:

    

?t7 ~ SAdd (SInt 3) (SInt 4)
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Example: using lemmas to find target program

Proof steps: Proof tree steps:

    

?t7 ~ SAdd (SInt 3) (SInt 4)
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Lemma StoT_SInt z :=  [TPush z] ~ SInt z.
Lemma StoT_Plus t1 s1 t2 s2: 
   t1 ~ s1 → t2 ~ s2 →
   t1 ++ t2 ++ [TPopAdd] ~ SAdd s1 s2.



Example: using lemmas to find target program

Proof steps: Proof tree steps:

    apply StoT_Plus.

?t1 ~ SInt 3 ?t2 ~ SInt 4

?t7 ~ SAdd (SInt 3) (SInt 4)
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Example: using lemmas to find target program

Proof steps: Proof tree steps:

    apply StoT_Plus.

?t1 ~ SInt 3 ?t2 ~ SInt 4

?t1 ~ SInt 3 ?t2 ~ SInt 4

?t7 ~ SAdd (SInt 3) (SInt 4)
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Example: using lemmas to find target program

Proof steps: Proof tree steps:

    

?t1 ~ SInt 3 ?t2 ~ SInt 4
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Example: using lemmas to find target program

Proof steps: Proof tree steps:

    

?t1 ~ SInt 3 ?t2 ~ SInt 4
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Lemma StoT_SInt z :=  [TPush z] ~ SInt z.
Lemma StoT_Plus t1 s1 t2 s2: 
   t1 ~ s1 → t2 ~ s2 →
   t1 ++ t2 ++ [TPopAdd] ~ SAdd s1 s2.



Example: using lemmas to find target program

Proof steps: Proof tree steps:

all: apply StoT_SInt. Defined.

    

?t1 ~ SInt 3 ?t2 ~ SInt 4

TPush 3 ~ SInt 3 TPush 4 ~ SInt 4
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Example: using lemmas to find target program

Proof steps: Proof tree steps:

all: apply StoT_SInt. Defined.

Compute t7_rel.

    

= exist [TPush 3; TPush 4; TPopAdd]

?t1 ~ SInt 3 ?t2 ~ SInt 4

TPush 3 ~ SInt 3 TPush 4 ~ SInt 4
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Relational compilation (2)

- We used lemmas to prove the existence of a target program
- Use Coq’s automatic proof search for finding a program of the target 

language using the lemmas
- Soundness, but no completeness
- TL;DR: a relational compiler is a collection of lemmas on semantic 

equivalences that can connect a source program to a target program 
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Relational compilation (3)

- What about compiling Coq code itself?
- A traditional compiler written in Coq cannot find an input type when the 

source language is Coq itself
- This is possible using relational compilation
- So relational compilation allows building a compiler for Coq within Coq itself!
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Introducing Rupicola

- Rupicola: compiler-construction toolkit for compiling Coq to Bedrock2 
(language similar to C)

- Implements idea of relational compilation by using proven lemmas to compile 
to the target language

- Users provide lemmas if a particular semantic equivalence has not yet been 
established

- Thus it is construction toolkit, rather than a general compiler itself

29Rupicola & the compilation pipeline



Compilation pipeline

Coq code Bedrock2 
code C code RISC-V 

code

Legend

Annotated 
implementation

High-level 
specifications

Low-level 
imperative code

Low-level 
imperative code

Low-level 
imperative code

manually
verified

compiled 
with 
Rupicola

pretty-printed

verified 
compilation
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Example: upstring

- Specification: 

- Annotated implementation: 

- Transformations:

-    In place mutation

-    For-loop rather than higher-order iteration

-    Different representation of strings

𝛌s → String.map toupper s

𝛌s → let/n s := ListArray.map(𝛌b  → a2b (toupper b2a b))) s in s
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Example: upstring

- Generated C code:

void upstr(uintptr_t as, uintptr_t len) {
  char *s = (char*s) as; int l = len;
  for (int pos = 0; pos < l; pos++) {
    s[pos] = (((unsigned)s[pos] - ‘a’) & 0xff) < 26 ? s[pos] & 0x5f : s[pos];
  }
}
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Compiling with Rupicola

- Asks user to provide help when compilation initially fails
- A lemma can then be given,  using a Hoare triple of the form: 

State Predicate on 
Coq code

Bedrock2 code
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Performance evaluation

-
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Limitations

- Expertise in Coq, Bedrock2 and Rupicola needed
- Not all low-level patterns translate well to functional models
- There may still be bugs somewhere in the trusted computing base: Coq’s 

proof checker & the pretty-printer from Bedrock2 to C

35Limitations



Paper 2: Verified low-level programming embedded in F* 
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Outline paper 2

- F* & Low*
- The KaRaMeL compiler
- Modelling C in Low*
- Example: ChaCha20
- Performance evaluation
- Limitations
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Introducing F*

- High-level functional language like Coq
- Supports dependent typing, user-defined monads & refined types 
- Can also take the role of proof assistant through Coq-like tactics & automated 

proof search
- The F* ecosystem contains several Domain Specific Languages that each 

seek to fulfill a particular role, e.g. Low*, Steel, etc.
- This makes it more of a general purpose language than Coq
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Introducing Low*

- Low* is a shallow embedding of (a subset of) C in F*
- Simulates C’s memory model, arrays, etc.

- Compiled to C using the KaRaMeL compiler
- Some type syntax: Tot & Ghost

F* CLow*

39F* & Low*



The compilation process

40The KaRaMeL compiler



The compilation process: 𝝀ow*

- 𝛌ow*: establishes formal core of Low*
- Erases specifications & proofs

Low*

𝛌ow*

41The KaRaMeL compiler



The compilation process: C*

- C*: intermediate language between 𝛌ow* & Clight 
- Syntax becomes more C-like
- Switches calling convention to explicitly push frame

𝛌ow*

C*
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The compilation process: Clight

- Clight: deterministic subset of C
- Hoists local variables
- Source language for CompCert
- Or use pretty-printer to C

C*

Clight

43The KaRaMeL compiler



Modeling C: memory model

- Start off by adding state through the F* state monad:

- Essentially represents a function:

- Next we instantiate s with Hyperstack.mem

ST (a:Type) (requires pre: s → Type) (ensures post: s → a → s → Type)

m0:s → (r:a, m1:s)
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Memory model: hyper-stacks

- A hyper-stack partitions memory intro regions
- Each region has its own id and a predicate stating whether it is a stack or a 

heap region
- One stack region, root, outlives the other regions
- In code specification:

type rid
val is_stack_region: rid → Tot bool
type sid = r:rid{is_stack_region r}
type hid = r:rid{¬(is_stack_region r)}
val root: sid
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Memory model: references

- Partial signature of the model:

46

type ref : Type → Type
val region_of: ref a → Ghost rid
val _∈_ : ref a → mem → Tot Type
val _ [_] : ref a → mem → Ghost a
val _ [_] ← _ : mem → ref a → a → Ghost mem

Modelling C in Low*



Example: ChaCha20

- Stream cipher for symmetric encryption;
- Computes pseudo-random block of bytes to encrypt
- We will see the Low* & C version 

47Example: ChaCha20



Example: ChaCha20
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let chacha20
  (len: uint32{len ≤ blocklen}) 
  (output: bytes{len = output.length}) 
  …
  = …

void chacha20(
  uint32_t len, 
  uint8_t ∗output, 
  uint8_t ∗key, 
  uint8_t ∗nonce, 
  uint32_t counter)
  {
    …
  }

Example: ChaCha20



Example: ChaCha20
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let chacha20
  (len: uint32{len ≤ blocklen}) 
  (output: bytes{len = output.length}) 
  …
  : Stack unit
    (requires (𝛌m0 → output ∈ m0 ∧ key ∈ m0 ∧
     nonce ∈ m0))            
    (ensures (𝛌m0 _ m1 → modifies output m0 m1   
     ∧ m1[output] == 
     Seq.prefix len(Spec.chacha20 m0[key]  
     m0[nonce]) counter))) = …

void chacha20(
  uint32_t len, 
  uint8_t ∗output, 
  uint8_t ∗key, 
  uint8_t ∗nonce, 
  uint32_t counter)
  {
    …
  }

Example: ChaCha20



Example: ChaCha20
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let chacha20
  (len: uint32{len ≤ blocklen}) 
  (output: bytes{len = output.length}) 
  …
  : Stack unit
    (requires (𝛌m0 → output ∈ m0 ∧ key ∈ m0 ∧
     nonce ∈ m0))            
    (ensures (𝛌m0 _ m1 → modifies output m0 m1   
     ∧ m1[output] == 
     Seq.prefix len(Spec.chacha20 m0[key]  
     m0[nonce]) counter))) = 
push_frame (); 
let state = Buffer.create 0ul 32ul in
let block = Buffer.sub state 16ul 16ul in 
chacha20_init block key nonce counter; 
chacha20_update output state len;
pop_frame ()

void chacha20(
  uint32_t len, 
  uint8_t ∗output, 
  uint8_t ∗key, 
  uint8_t ∗nonce, 
  uint32_t counter)
  {

      uint32_t state[32] = { 0 }; 
      uint32_t ∗block = state + 16; 
      chacha20_init(block, key, nonce, counter);   
      chacha20_update(output, state, len);
  }

Example: ChaCha20



Performance evaluation

- High-assurance cryptographic library (HACL) for cryptographic primitives to 
test performance of C code generated by Low* & KaRaMeL in real-world 
setting

- Based on the NaCl API has characteristics like:

-    Only supports modern algorithms

-    Exposes general functions for certain functionality rather than specific  
algorithms

51Performance evaluation



HACL* performance comparison

Algorithm HACL* Sodium TweetNaCL OpenSSL eBACS fastest

ChaCha20 6.17 cy/B 6.97 cy/B - 8.04 cy/B 1.23 cy/B

Salsa20 6.34 cy/B 8.44 cy/B 15.14 cy/B - 1.39 cy/B

Poly1305 2.07 cy/B 2.48 cy/B 32.32 cy/B 2.16 cy/B 0.68 cy/B

Curve25519 157k cy/mul 162k cy/mul 1663k cy/mul 359k cy/mul 145 cy/mul

AEAD-ChaCha20- 
poly1305

8.37 cy/B 9.60 cy/B - 8.53 cy/B -

SecretBox 8.43 cy/B 11.03 cy/B 50.56 cy/B - -

Box 18.10 cy/B 20.97 cy/B 149.22 cy/B - -
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Limitations

- Requires an understanding of F* and Low* languages as well as knowledge of 
low-level programming in C to utilize Low*

- Trusted Computing Base including F* type checking algorithm, the Z3 SMT 
solver used by F* and the KaRaMeL compiler
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Conclusion
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Summary of similarities & differences
Rupicola Low*

Programming to be done Specification, annotated 
implementation and lemmas 
in high-level language Coq 
using Rupicola tool kit

Performance-critical parts 
in DSL Low* and proofs, 
specifications, etc. in 
high-level language F*

Compilation Relational compilation from 
using Rupicola

Traditional compilation 
using separate program 
KaRaMeL

Correctness Uses Coq proofs/typing, 
compilation is guaranteed to 
be sound

Uses F* proofs/typing

Trusted Computing Base Coq and pretty-printer to C F*, Z3 SMT solver & 
KaRaMeL
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Q&A

Ask away!
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Example: formal definitions

- Language definitions: 

- Example definition of 𝝈S:

- Then t ~ s holds when:

Inductive S := SInt z | SAdd (s1 s2 : S).
Inductive T_Op := TPush z | TPopAdd.
Definition T := list T_op.

Fixpoint 𝝈S (s : S) :=
   match s with
   | SInt z           ⇒  z
   | SAdd s1 s2 ⇒  𝝈S s1 + 𝝈S s2 end.

∀ zs, 𝝈T t zs = 𝝈S s :: zs
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Example

- Source language S describing arithmetic expressions
- Target language T describing stack operations push & popadd
- Define valuation functions 𝝈S & 𝝈T that map their operations to operations on 𝕫:

- t ~ s if they evaluate to the same result for each initial stack zs:

PopAdd SAdd

𝝈T t zs 𝝈S s :: zs

+

Output list
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Low* restrictions

  The code must:

- be first order to avoid allocating closures
- make heap allocations explicit
- not use recursive datatypes
- be monomorphic
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Example: Dereferencing in heap

- Defining an operator ! for getting the value of the reference: 

- Note how these F* features help guarantee correctness!

60Modelling C in Low*

val (!): x:ref a →  ST a (requires (𝝀m → x∈m )) (ensures (𝝀m0 y m1 → m0 = m1 ⋀ y = m1[x]))



Modelling C: arrays

- Introduce a buffer type:
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