## On Non-Looping Term

 Rewriting
## \&

## Proving Non-Looping

Non-Termination Automatically
Astrid van der Jagt

## In this presentation

## Non-Looping Non-Termination of TRS

- Term Rewrite Systems (TRS)
- Paper 1: On Non-Looping Term Rewriting
- Loops/Non-Loops
- Inner-looping TRS
- Normal TRS
- Paper 2: Proving Non-Looping Non-Termination Automatically
- Pattern terms and pattern rules
- Proving Non-Termination


## Term Rewrite Systems (TRS) (1/7)

- Terms
- Signature $F$
- Infinite set of variables $V$
- Rules
- Context
- Substitution


## Term Rewrite Systems (TRS) (2/7)

Terms and Rules

- Terms:
- $F=\{$ plus (2), s (1), $0(0)\}$
- $x, y \in V$
- Rules:
- plus $(x, 0) \quad \rightarrow x$
- plus(x, s(y)) $\rightarrow$ plus(s(x), y)
- $s \rightarrow_{R}$ t if there exists a rewrite rule $l \rightarrow r$, a substitution $\sigma$ and a context $C$ such that $s=C[/ \sigma]$ and $\mathrm{t}=C[r \sigma]$


## Term Rewrite Systems (TRS) (3/7)

## Context

- $s \rightarrow_{R}$ t if there exists a rewrite rule $l \rightarrow r$, a substitution $\sigma$ and a context $C$ such that $s=C[/ \sigma]$ and $\mathrm{t}=C[r \sigma]$
- Let $C$ be a context with a hole $\square$

Then $C[t]$ is the term obtained from replacing $\square$ with a term t .

- Example:
- $C=f(x, g(\square, z))$
- $\quad C[t]=f(x, g(t, z))$


## Term Rewrite Systems (TRS) (4/7)

## Substitution

- $s \rightarrow_{R}$ t if there exists a rewrite rule $l \rightarrow r$, a substitution $\sigma$ and a context $C$ such that $s=C[/ \sigma]$ and $\mathrm{t}=C[r \sigma]$
- A substitution is a mapping $\sigma$ from $V$ to the Terms.

$$
\sigma=[x \mapsto s(s(0)), y \mapsto s(0)]
$$

- Applying $\sigma$ to a term $t=\operatorname{plus}(x, s(y))$, we get
$\mathrm{t} \sigma=\mathrm{plus}(\mathrm{s}(\mathrm{s}(0)), \mathrm{s}(\mathrm{s}(0)))$


## Term Rewrite Systems (TRS) (5/7)

Rewriting

- $s \rightarrow_{\mathrm{R}}$ t if there exists a rewrite rule $l \rightarrow r$, a substitution $\sigma$ and a context $C$ such that $s=C[/ \sigma]$ and $\mathrm{t}=C[r \sigma]$
- Rules:
- plus $(x, 0) \quad \rightarrow x$
- plus $(x, s(y)) \quad \rightarrow$ plus $(s(x), y)$

$$
\begin{aligned}
& C=\square \\
& \sigma=[\mathrm{x} \mapsto \mathrm{~s}(\mathrm{~s}(0)), \mathrm{y} \mapsto \mathrm{~s}(0)]
\end{aligned}
$$

- plus(s(s(0)), s(s(0))) $\rightarrow_{R}$ plus(s(s(s(0))), s(0))
$\rightarrow_{\mathrm{R}}$ plus(s(s(s(s(0)))), 0)
$\rightarrow_{\mathrm{R}} \mathrm{S}(\mathrm{S}(\mathrm{s}(\mathrm{s}(0))))$


## Term Rewrite Systems (TRS) (6/7)

Non-Termination

- Rules:
$\begin{array}{ll}-\operatorname{plus}(x, 0) & \rightarrow x \\ -\operatorname{plus}(x, s(y)) & \rightarrow \operatorname{plus}(y, s(x))\end{array}$
- plus(s(s(0)), s(s(0))) $\rightarrow_{R}$ plus(s(0), s(s(s(0))))
$\rightarrow_{\mathrm{R}}$ plus(s(s(0)), s(s(0)))
$\rightarrow{ }_{\mathrm{R}} \cdots$


## Term Rewrite Systems (TRS) (7/7)

Termination

- A TRS is terminating if it does not admit any infinite reduction sequences


# On Non-Looping Term Rewriting 

Yi Wang and Masahiko Sakai (2006)

## Loops

## Looping TRS

A reduction sequence loops if it contains $t \rightarrow_{R}{ }^{+} C[t \sigma]$. A TRS admits a loop if there is a looping reduction sequence.

$$
\left.\begin{array}{lll}
f(x) & & t=f(x) \\
& & C=h(\square(g(x))) \\
f(x) & & \sigma=[x \mapsto g
\end{array}\right)
$$

## Non-Loops (1/5)

Non-Looping TRS
A rewrite sequence is non-looping if it is infinite and does not contain any loop. A TRS is non-looping if it admits an non-looping sequence. A TRS is properly non-looping if it is non-looping and does not admit any looping sequence.

$$
\begin{array}{ll}
\mathrm{b}(\mathrm{c}) & \rightarrow \mathrm{d}(\mathrm{c}) \\
\mathrm{b}(\mathrm{~d}(\mathrm{x})) & \rightarrow \mathrm{d}(\mathrm{~b}(\mathrm{x})) \\
\mathrm{a}(\mathrm{~d}(\mathrm{x})) & \rightarrow \mathrm{a}(\mathrm{~b}(\mathrm{~b}(\mathrm{x})))
\end{array}
$$

$$
\begin{aligned}
\mathrm{a}(\mathrm{~b}(\mathrm{c})) & \rightarrow_{\mathrm{R}}^{2} \mathrm{a}(\mathrm{~b}(\mathrm{~b}(\mathrm{c}))) \\
& \rightarrow_{\mathrm{R}}^{3} \mathrm{a}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(\mathrm{c})))) \\
& \rightarrow_{\mathrm{R}}^{4} \cdots
\end{aligned}
$$

## Non-Loops (2/5)

## Inner-Looping sequence/TRS

Given a TRS R, let $t$ be a term, an inner-looping sequence is of the form:
$C\left[\Delta^{\left.\ell_{1} t \delta^{\ell_{1}}\right]} \rightarrow_{R}^{+} \quad C\left[\Delta^{\ell_{2} t \delta^{\ell_{2}}}\right] \quad \rightarrow_{R}^{+} \cdots\right.$
Where $C$ and $\Delta$ are contexts, $\delta$ is a substitution, $\{\ell\}$ is an infinite sequence of natural numbers.

A TRS R is inner-looping if $R$ admits an inner-looping sequence. A TRS $R$ is properly inner-looping if R is inner-looping and does not admit any looping sequence.

## Non-Loops (3/5)

Inner-Looping TRS
$C\left[\Delta^{\left.\ell_{1} t \delta^{\ell_{1}}\right]} \rightarrow_{R}^{+} \quad C\left[\Delta^{\left.\ell_{2} t \delta^{\ell_{2}}\right]} \rightarrow_{\mathrm{R}}^{+} \cdots \quad\right.\right.$ for term t ,
where $C$ and $\Delta$ are contexts, $\delta$ is a substitution, $\left\{\ell_{i}\right\}$ is an infinite sequence.

$$
\begin{array}{ll}
\mathrm{b}(\mathrm{c}) & \rightarrow \mathrm{d}(\mathrm{c}) \\
\mathrm{b}(\mathrm{~d}(\mathrm{x})) & \rightarrow \mathrm{d}(\mathrm{~b}(\mathrm{x})) \\
\mathrm{a}(\mathrm{~d}(\mathrm{x})) & \rightarrow \mathrm{a}(\mathrm{~b}(\mathrm{~b}(\mathrm{x})))
\end{array}
$$

$$
\begin{aligned}
\mathrm{a}(\mathrm{~b}(\mathrm{c})) & \rightarrow_{\mathrm{R}}^{2} \mathrm{a}(\mathrm{~b}(\mathrm{~b}(\mathrm{c}))) \\
& \rightarrow_{\mathrm{R}}^{3} \mathrm{a}(\mathrm{~b}(\mathrm{~b}(\mathrm{~b}(\mathrm{c})))) \\
& \rightarrow_{\mathrm{R}}^{4} \ldots
\end{aligned}
$$

$\mathrm{t}=\mathrm{c}, C=\mathrm{a}(\square), \Delta=\mathrm{b}(\square), \delta=\varnothing, \ell_{i}=i$

## Non-Loops (4/5)

## Normal TRS

Are there non-looping rewrite sequences without any patterns?
Normal numbers: real numbers whose digits show a random distribution with all digits appearing equally.

Normal sequence: infinite reduction sequence with all function symbols appearing equally in every term of the sequence.

Normal TRS is a TRS that admits a normal sequence.

## Non-Loops (5/5)

The inner-looping property and the properly inner-looping property for TRSs are undecidable.

The non-looping property is undecidable.

## Conclusion

On Non-Looping Term Rewriting

- Looping TRS \& Non-looping TRS
- Inner-looping TRS
- Normal TRS
- Undecidability


## Proving Non-Looping

## Non-Termination Automatically

Fabian Emmes, Tim Enger and Jürgen Giesl (2012)

## Proving Non-Looping Non-Termination Automatically

- Pattern terms
- Pattern rules
- The technique: narrowing


## Our example (1/2)

Proving non-looping non-termination automatically

$$
\begin{aligned}
& \text { def } f() \text { : } \\
& \text { while }(g t(x, y)) \text { : } \\
& x=d b l(x) \\
& y=y+1
\end{aligned}
$$

## Our example (2/2)

Proving non-looping non-termination automatically

| $\mathrm{f}(\mathrm{tt}, \mathrm{x}, \mathrm{y})$ | $\rightarrow \mathrm{f}(\mathrm{gt}(\mathrm{x}, \mathrm{y}), \mathrm{dbl}(\mathrm{x}), \mathrm{s}(\mathrm{y})$ ) | def $f()$ : |
| :---: | :---: | :---: |
| gt(s(x), 0) | $\rightarrow$ tt | while (gt( $\mathrm{x}, \mathrm{y}$ ) ): |
| $\mathrm{gt}(0, \mathrm{y})$ | $\rightarrow \mathrm{ff}$ | $x=d b l(x)$ |
| gt(s(x), s(y)) | $\rightarrow \mathrm{gt}(\mathrm{x}, \mathrm{y})$ | $y=y+1$ |
| $\mathrm{dbl}(\mathrm{x})$ | $\rightarrow$ times(s(s(0)), x) |  |
| times(x, 0) | $\rightarrow 0$ |  |
| times(x, s(y)) | $\rightarrow$ plus(times( $\mathrm{x}, \mathrm{y}$ ), x ) |  |
| plus( $\mathrm{x}, 0$ ) | $\rightarrow \mathrm{X}$ |  |
| plus(x, s(y)) | $\rightarrow$ plus(s(x), y) |  |

## Pattern Terms (1/2)

Describing a set of terms

A mapping $n \mapsto t \sigma^{n} \mu$

- tin Terms
- $\quad \sigma, \mu$ are substitutions

$$
\begin{array}{ll}
\operatorname{gt}(\mathrm{s}(\mathrm{x}), 0) & \rightarrow \mathrm{tt} \\
\mathrm{gt}(\mathrm{~s}(\mathrm{x}), \mathrm{s}(\mathrm{y})) & \rightarrow \mathrm{gt}(\mathrm{x}, \mathrm{y})
\end{array}
$$

$$
\begin{array}{ccc}
\text { Base term } & \text { Pumping substitution } & \text { Closing substitution } \\
g t(s(x), s(y)) & {[x \mapsto s(x), y \mapsto s(y)]^{n}} & {[x \mapsto s(x), y \mapsto 0]}
\end{array}
$$

## Pattern Terms (2/2)

Interpreting a pattern term
A mapping $n \mapsto t \sigma^{n} \mu$

For $\mathrm{n}=1$, we apply the pumping substitution once to the base term, and then apply the closing substitution: gt(s(s(x)), s(s(y)))
gt(s(s(s(x))), s(s(0)))

Base term
gt(s(x), s(y))

Pumping substitution
$[x \mapsto s(x), y \mapsto s(y)]^{n}$

Closing substitution

$$
[x \mapsto s(x), y \mapsto 0]
$$

## Pattern Rules

$$
\begin{array}{ll}
\operatorname{gt}(\mathrm{s}(\mathrm{x}), 0) & \rightarrow \mathrm{tt} \\
\operatorname{gt}(\mathrm{~s}(\mathrm{x}), \mathrm{s}(\mathrm{y})) & \rightarrow \mathrm{gt}(\mathrm{x}, \mathrm{y})
\end{array}
$$

Describing a set of rewrite sequences
A pattern rule $p \hookrightarrow q$ is correct w.r.t. a TRS $R$ if $p(n) \rightarrow_{R}{ }^{+} q(n)$ for all $n \in \mathbb{N}$. $g t\left(s^{n+1}(x), s^{n+1}(y)\right) \quad g t\left(s^{n+2}(x), s^{n+1}(0)\right) \quad$ and it holds that $g t\left(s^{n+2}(x), s^{n+1}(0)\right) \rightarrow_{R}^{+}$ tt

> Base term Base term gt(s(x), s(y) gt(s(x), s(y))
tt
tt

Pumping substitution
Pumping substitution
$[x \mapsto s(x), y \mapsto s(y)]^{n}$

Closing substitution
Closing substitution
$[x \mapsto s(x), y \mapsto 0]$
$\not \varnothing^{\hookrightarrow}$
$\varnothing^{n}$

## Proving Non-Looping Non-Termination Automatically

The technique

1. Generate pattern rules from the TRS.
2. Modify to avoid empty pattern substitutions.
3. Prepare for narrowing $p \hookrightarrow q$ with $p^{\prime} \hookrightarrow q$ ':
a. Make the base term of $q$ at some position equal to the base term of $p^{\prime}$.
b. Make the pumping substitutions and closing substitutions of the two pattern rules equal.
4. Narrow $p \hookrightarrow q$ with $p^{\prime} \hookrightarrow q^{\prime}$.
5. Check for non-termination of the resulting rule $s \hookrightarrow t$ : is $t$ a specialization of $s$ ?

## Detecting Non-Termination

$$
f(t t, x, y) \rightarrow f(g t(x, y), d b l(x), s(y))
$$

Theorem

Let s $\sigma^{n} \mu \hookrightarrow \mathrm{t}\left(\sigma^{\mathrm{m}} \theta\right)^{\mathrm{n}}(\mu \mathrm{v})$ be correct w.r.t. a TRS R, where $\theta$ commutes with both $\sigma$ and $\mu$. If there is a position $\pi$ and some $b \in \mathbb{N}$ such that $s \sigma^{b}=\left.t\right|_{\pi}$, then $R$ is non-terminating.
$s \sigma^{n} \mu \rightarrow_{R}^{+} t\left(\sigma^{m} \theta\right)^{n}(\mu v)$ and if we zoom in on the subterm where $s \sigma^{b}=\left.t\right|_{\pi}$ we get

$$
\begin{aligned}
\left.\mathrm{t}\right|_{\pi}\left(\sigma^{\mathrm{m}} \theta\right)^{\mathrm{n}}(\mu \mathrm{v}) & =\mathrm{s} \sigma^{\mathrm{b}}\left(\sigma^{\mathrm{m}} \theta\right)^{\mathrm{n}}(\mu \mathrm{v}) \\
& =\mathrm{s} \sigma^{m n+b} \mu \theta^{\mathrm{n}} v
\end{aligned}
$$

## Creating Pattern Rules (1/16)

$$
\operatorname{gt}(\mathrm{s}(\mathrm{x}), \mathrm{s}(\mathrm{y})) \quad \rightarrow \mathrm{gt}(\mathrm{x}, \mathrm{y})
$$

## Using inference rules

$$
s \varnothing^{n} \varnothing \hookrightarrow t \varnothing^{n} \varnothing \quad \text { if } s \rightarrow t \in R
$$

Base term Pumping substitution
gt(s(x), s(y))
gt(x, y)
$\varnothing^{n}$
$\hookrightarrow$
$\varnothing^{n}$

Closing substitution

## Creating Pattern Rules (2/16)

$$
\operatorname{gt}(\mathrm{s}(\mathrm{x}), \mathrm{s}(\mathrm{y})) \quad \rightarrow \operatorname{gt}(\mathrm{x}, \mathrm{y})
$$

## Using inference rules

$s \varnothing^{n} \varnothing \hookrightarrow t \varnothing^{n} \varnothing \quad$ if $s \theta=t \sigma$, and
$s \sigma^{n} \varnothing \hookrightarrow t \theta^{n} \varnothing \theta$ commutes with $\sigma$

Base term

```
gt(s(x), s(y))
```

gt(x, y)

Pumping substitution

$$
[\mathrm{x} \mapsto \mathrm{~s}(\mathrm{x}), \mathrm{y} \mapsto \mathrm{~s}(\mathrm{y})]^{\pi}
$$

$$
\hookrightarrow
$$

$\square$

Closing substitution
$\varnothing$
$\varnothing$

## Creating Pattern Rules (3/16)

$$
\operatorname{gt}(\mathrm{s}(\mathrm{x}), \mathrm{s}(\mathrm{y})) \quad \rightarrow \mathrm{gt}(\mathrm{x}, \mathrm{y})
$$

## Equivalence by domain renaming

$$
\begin{aligned}
& p \hookrightarrow q \\
& p^{\prime} \hookrightarrow q^{\prime}
\end{aligned} \quad \text { if } p \text { is equivalent to } p^{\prime} \text { and }
$$

$$
\text { Base term } \quad \text { Pumping substitution } \quad \text { Closing substitution }
$$

$$
\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}\left[x^{\prime} \mapsto x, y^{\prime} \mapsto y\right]
$$

gt(s(x’), s(y’))
gt(x, y)

## Creating Pattern Rules (4/16)

$$
\operatorname{gt}(\mathrm{s}(\mathrm{x}), \mathrm{s}(\mathrm{y})) \quad \rightarrow \operatorname{gt}(\mathrm{x}, \mathrm{y})
$$

## Equivalence by irrelevant pattern substitutions

$$
\frac{p \hookrightarrow q}{p^{\prime} \hookrightarrow q^{\prime}} \quad \text { if } p \text { is equivalent to } p^{\prime} \text { and }
$$

Base term
gt(s(x’), s(y’))
gt(x, y)

Pumping substitution
$\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}\left[x^{\prime} \mapsto x, y^{\prime} \mapsto y\right]$
$\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}\left[x^{\prime} \mapsto x, y^{\prime} \mapsto y\right]$

## Creating Pattern Rules (5/16)

Instantiation

| $\operatorname{gt}(\mathrm{s}(\mathrm{x}), 0)$ | $\rightarrow \mathrm{tt}$ |
| :--- | :--- |
| $\mathrm{gt}(\mathrm{s}(\mathrm{x}), \mathrm{s}(\mathrm{y}))$ | $\rightarrow \mathrm{gt}(\mathrm{x}, \mathrm{y})$ |

We instantiate $x$ to be $s(x)$ and $y$ to be 0 .

$$
\begin{array}{cc}
\text { Base term } & \text { Pumping substitution } \\
\text { gt( } \left.\mathrm{s}\left(\mathrm{x}^{\prime}\right), \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right) & {\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}\left(\mathrm{x}^{\prime}\right), \mathrm{y}^{\prime} \mapsto \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right]^{n}\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}(\mathrm{x}), \mathrm{y}^{\prime} \mapsto 0\right]} \\
& \\
\hline \mathrm{gt}(\mathrm{~s}(\mathrm{x}), 0) & {\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}\left(\mathrm{x}^{\prime}\right), \mathrm{y}^{\prime} \mapsto \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right]^{n}\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}(\mathrm{x}), \mathrm{y}^{\prime} \mapsto 0\right]}
\end{array}
$$

Closing substitution

## Creating Pattern Rules (6/16)

Pattern rule from TRS

$$
s \varnothing^{n} \varnothing \hookrightarrow t \varnothing^{n} \varnothing \quad \text { if } s \rightarrow t \in R
$$

Pumping substitution

$\phi^{n}$
$\varnothing^{n}$

Base term

$$
\operatorname{gt}(\mathrm{s}(\mathrm{x}), 0)
$$

$\rightarrow$
$\qquad$
$\mathrm{gt}(\mathrm{s}(\mathrm{x}), 0) \quad \rightarrow \mathrm{tt}$
$g t(s(x), s(y)) \quad \rightarrow g t(x, y)$

Closing substitution

## Creating Pattern Rules (7/16)

Equivalence by irrelevant pattern substitutions

$$
\begin{array}{ll}
\operatorname{gt}(\mathrm{s}(\mathrm{x}), 0) & \rightarrow \mathrm{tt} \\
\operatorname{gt}(\mathrm{~s}(\mathrm{x}), \mathrm{s}(\mathrm{y})) & \rightarrow \mathrm{gt}(\mathrm{x}, \mathrm{y})
\end{array}
$$

Since $x^{\prime}$ and $y^{\prime}$ are not relevant in the pattern rule:
Base term Pumping substitution Closing substitution

$$
\begin{array}{cl}
g t(s(x), 0) & {\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}\left[x^{\prime} \mapsto s(x), y^{\prime} \mapsto 0\right]} \\
& \mapsto \\
\mathrm{tt} & {\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}\left[x^{\prime} \mapsto s(x), y^{\prime} \mapsto 0\right]}
\end{array}
$$

## Creating Pattern Rules (8/16)

$$
\begin{array}{ll}
\operatorname{gt}(\mathrm{s}(\mathrm{x}), 0) & \rightarrow \mathrm{tt} \\
\operatorname{gt}(\mathrm{~s}(\mathrm{x}), \mathrm{s}(\mathrm{y})) & \rightarrow \operatorname{gt}(\mathrm{x}, \mathrm{y})
\end{array}
$$

Narrowing

Base term gt(s(x'), s(y'))

$$
\operatorname{gt}(\mathrm{s}(\mathrm{x}), 0)
$$

Base term
gt(s(x), 0)

Pumping substitution

$$
\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}\left(\mathrm{x}^{\prime}\right), \mathrm{y}^{\prime} \mapsto \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right]^{\mathrm{n}}\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}(\mathrm{x}), \mathrm{y}^{\prime} \mapsto 0\right]
$$

$$
\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}\left(\mathrm{x}^{\prime}\right), \mathrm{y}^{\prime} \mapsto \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right]^{\mathrm{n}}\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}(\mathrm{x}), \mathrm{y}^{\prime} \mapsto 0\right]
$$

Pumping substitution
Closing substitution

$$
\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}\left[x^{\prime} \mapsto s(x), y^{\prime} \mapsto 0\right]
$$

$$
\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}\left(\mathrm{x}^{\prime}\right), \mathrm{y}^{\prime} \mapsto \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right]^{\mathrm{n}}\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}(\mathrm{x}), \mathrm{y}^{\prime} \mapsto 0\right]
$$

## Creating Pattern Rules (9/16)

Narrowing

$$
\frac{s \sigma^{n} \mu \hookrightarrow t \sigma^{n} \mu \quad u \sigma^{n} \mu \hookrightarrow v \sigma^{n} \mu}{s \sigma^{n} \mu \hookrightarrow t[v]_{\pi} \sigma^{n} \mu} \quad \text { if }\left.t\right|_{\pi}=u
$$

Base term Pumping substitution Closing substitution

$$
\begin{array}{cc}
g t\left(s\left(x^{\prime}\right), s\left(y^{\prime}\right)\right) & {\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}\left[x^{\prime} \mapsto s(x), y^{\prime} \mapsto 0\right]} \\
& \mapsto \\
t t & {\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}\left[x^{\prime} \mapsto s(x), y^{\prime} \mapsto 0\right]}
\end{array}
$$

## Creating Pattern Rules (10/16)

## Pattern rule from TRS

$$
s \varnothing^{n} \varnothing \hookrightarrow t \varnothing^{n} \varnothing \quad \text { if } s \rightarrow t \in R
$$

Base term Pumping substitution
$f(t t, x, y)$
$\mathrm{f}(\mathrm{gt}(\mathrm{x}, \mathrm{y}), \operatorname{dbl}(\mathrm{x}), \mathrm{s}(\mathrm{y}))$
$\varnothing^{n}$

Closing substitution

## Creating Pattern Rules (11/16)

 $f(t t, x, y) \rightarrow f(g t(x, y), d b l(x), s(y))$
## Instantiation

We instantiate $x$ to be $s\left(x^{\prime}\right)$ and $y$ to be $s\left(y^{\prime}\right)$.

Base term
Pumping substitution

$$
\mathrm{f}\left(\mathrm{tt}, \mathrm{~s}\left(\mathrm{x}^{\prime}\right), \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right)
$$

$\varnothing^{n}$

Closing substitution
$\mathrm{f}\left(\mathrm{gt}\left(\mathrm{s}\left(\mathrm{x}^{\prime}\right), \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right), \mathrm{dbl}\left(\mathrm{s}\left(\mathrm{x}^{\prime}\right)\right), \mathrm{s}^{2}\left(\mathrm{y}^{\prime}\right)\right)$
$\varnothing^{n}$

## Creating Pattern Rules (12/16)

Instantiation of pumping substitutions

$$
\begin{gathered}
s \sigma^{n} \mu \hookrightarrow t \theta^{n} v \\
(\sigma \rho)^{n} \mu \hookrightarrow t(\theta \rho)^{n} v
\end{gathered} \quad \text { if } \rho \text { commutes with }
$$

Base term Pumping substitution
Closing substitution

$$
f\left(t t, s\left(x^{\prime}\right), s\left(y^{\prime}\right)\right)
$$

$$
\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}
$$

$\mathrm{f}\left(\mathrm{gt}\left(\mathrm{s}\left(\mathrm{x}^{\prime}\right), \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right), \mathrm{dbl}\left(\mathrm{s}\left(\mathrm{x}^{\prime}\right)\right), \mathrm{s}^{2}\left(\mathrm{y}^{\prime}\right)\right) \quad\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}\left(\mathrm{x}^{\prime}\right), \mathrm{y}^{\prime} \mapsto \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right]^{n}$

## Creating Pattern Rules (13/16)

$$
f(t t, x, y) \rightarrow f(g t(x, y), d b l(x), s(y))
$$

Instantiation of closing substitutions

$$
\frac{s \sigma^{n} \mu \hookrightarrow t \theta^{n} v}{s \sigma^{n}(\mu \rho) \hookrightarrow t \theta^{n}(v \rho)}
$$

Base term

$$
\mathrm{f}\left(\mathrm{tt}, \mathrm{~s}\left(\mathrm{x}^{\prime}\right), \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right)
$$

Pumping substitution

$$
\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}\left(\mathrm{x}^{\prime}\right), \mathrm{y}^{\prime} \mapsto \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right]^{\mathrm{n}} \quad\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}(\mathrm{x}), \mathrm{y}^{\prime} \mapsto 0\right]
$$

$f\left(g t\left(s\left(x^{\prime}\right), s\left(y^{\prime}\right)\right), d b l\left(s\left(x^{\prime}\right)\right), s^{2}\left(y^{\prime}\right)\right) \quad\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n} \quad\left[x^{\prime} \mapsto s(x), y^{\prime} \mapsto 0\right]$

## Creating Pattern Rules (14/16)

## Base term

f(tt, s(x'), s(y'))

Pumping substitution

$$
\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}
$$

$$
\left[x^{\prime} \mapsto s(x), y^{\prime} \mapsto 0\right]
$$

$\mathrm{f}\left(\mathrm{gt}\left(\mathrm{s}\left(\mathrm{x}^{\prime}\right), \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right), \mathrm{dbl}\left(\mathrm{s}\left(\mathrm{x}^{\prime}\right)\right), \mathrm{s}^{2}\left(\mathrm{y}^{\prime}\right)\right) \quad\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}\left(\mathrm{x}^{\prime}\right), \mathrm{y}^{\prime} \mapsto \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right]^{n} \quad\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}(\mathrm{x}), \mathrm{y}^{\prime} \mapsto 0\right]$

Base term
gt(s(x'), s(y'))

Pumping substitution

$$
\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}\left(\mathrm{x}^{\prime}\right), \mathrm{y}^{\prime} \mapsto \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right]^{n}
$$

$$
\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}
$$

Closing substitution

$$
\left[x^{\prime} \mapsto s(x), y^{\prime} \mapsto 0\right]
$$

$$
\left[x^{\prime} \mapsto s(x), y^{\prime} \mapsto 0\right]
$$

## Creating Pattern Rules (15/16)

Narrowing

$$
\begin{aligned}
\mathrm{f}(\mathrm{tt}, \mathrm{x}, \mathrm{y}) & \rightarrow \mathrm{f}(\mathrm{gt}(\mathrm{x}, \mathrm{y}), \mathrm{dbl}(\mathrm{x}), \mathrm{s}(\mathrm{y})) \\
\mathrm{dbl}(\mathrm{x}) & \rightarrow \operatorname{times}(\mathrm{s}(\mathrm{~s}(0)), \mathrm{x})
\end{aligned}
$$

$$
\frac{s \sigma^{n} \mu \leftrightarrow t \sigma^{n} \mu \quad u \sigma^{n} \mu \hookrightarrow v \sigma^{n} \mu}{s \sigma^{n} \mu \hookrightarrow t[v]_{\pi} \sigma^{n} \mu} \text { if }\left.t\right|_{\pi}=u
$$

Base term Pumping substitution Closing substitution

$$
\mathrm{f}\left(\mathrm{tt}, \mathrm{~s}\left(\mathrm{x}^{\prime}\right), \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right) \quad\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}\left(\mathrm{x}^{\prime}\right), \mathrm{y}^{\prime} \mapsto \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right]^{\mathrm{n}} \quad\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}(\mathrm{x}), \mathrm{y}^{\prime} \mapsto 0\right]
$$

$$
\mathrm{f}\left(\mathrm{tt}, \mathrm{dbl}\left(\mathrm{~s}\left(\mathrm{x}^{\prime}\right)\right), \mathrm{s}^{2}\left(\mathrm{y}^{\prime}\right)\right) \quad\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}\left(\mathrm{x}^{\prime}\right), \mathrm{y}^{\prime} \mapsto \mathrm{s}\left(\mathrm{y}^{\prime}\right)\right]^{\mathrm{n}} \quad\left[\mathrm{x}^{\prime} \mapsto \mathrm{s}(\mathrm{x}), \mathrm{y}^{\prime} \mapsto 0\right]
$$

## Creating Pattern Rules (16/16)

## Rewriting

$$
\begin{aligned}
& \mathrm{f}(\mathrm{tt}, \mathrm{x}, \mathrm{y}) \rightarrow \mathrm{f}(\mathrm{gt}(\mathrm{x}, \mathrm{y}), \mathrm{dbl}(\mathrm{x}), \mathrm{s}(\mathrm{y})) \\
& \mathrm{dbl}(\mathrm{x})
\end{aligned} \rightarrow \operatorname{times}(\mathrm{s}(\mathrm{~s}(0)), \mathrm{x})
$$

For rewriting, we can just rewrite the right-hand side of the pattern rule with the rewriting rules from the original TRS.

Base term Pumping substitution Closing substitution

$$
f\left(t t, s\left(x^{\prime}\right), s\left(y^{\prime}\right)\right) \quad\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n} \quad\left[x^{\prime} \mapsto s(x), y^{\prime} \mapsto 0\right]
$$

$f\left(t t\right.$, times $\left.\left(s^{2}(0), s\left(x^{\prime}\right)\right), s^{2}\left(y^{\prime}\right)\right)\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}\left[x^{\prime} \mapsto s(x), y^{\prime} \mapsto 0\right]$

## Creating Pattern Rules (16a/16c) times( $x, s(y)) \rightarrow$ plus $($ times $(x, y), x)$

 Pattern rule from TRS$$
s \varnothing^{n} \varnothing \hookrightarrow t \varnothing^{n} \varnothing \quad \text { if } s \rightarrow t \in R
$$

Base term Pumping substitution
Closing substitution

```
times( \(x, s(y)) \quad \theta^{n}\)
plus(times(x, y), x)
\(\varnothing^{n}\)
    \varnothing
    \varnothing
```

Creating Pattern Rules (16b/16c) times(x, s(y)) $\rightarrow$ plus $($ times $(x, y), x)$
$\frac{s \varnothing^{n} \varnothing \hookrightarrow t \varnothing^{n} \varnothing}{s \sigma^{n} \varnothing \hookrightarrow t[z]_{\pi}\left(\sigma \cup\left[z \mapsto t[z]_{\pi}\right]\right)^{n}\left[\left.z \mapsto t\right|_{\pi}\right]} \quad$ if $s=\left.t\right|_{\pi} \sigma$ and
$z \in V$ is fresh

Base term times( $\mathrm{x}, \mathrm{s}(\mathrm{y})$ )

Pumping substitution

$$
[y \mapsto s(y)]^{n}
$$

$$
\hookrightarrow
$$

plus(times(x, y), x)

Closing substitution

$$
\begin{gathered}
\varnothing \\
{[\mathrm{z} \mapsto \operatorname{times}(\mathrm{x}, \mathrm{y})]}
\end{gathered}
$$

## Creating Pattern Rules (16c/16c) $\quad f(t t, x, y) \rightarrow f(g t(x, y), d b l(x), s(y))$

Some steps further

After also narrowing with times and cleaning the pattern rule:

$$
\begin{array}{ccc}
\text { Base term } & \text { Pumping substitution } & \text { Closing substitution } \\
f\left(t t, s\left(x^{\prime}\right), s\left(y^{\prime}\right)\right) & {\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}} & {\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto 0\right]} \\
& \mapsto & \\
f\left(t t, s^{2}\left(x^{\prime}\right), s^{2}\left(y^{\prime}\right)\right) & {\left[x^{\prime} \mapsto s^{2}\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}\left[x^{\prime} \mapsto \operatorname{times}\left(s^{2}(0), s\left(x^{\prime}\right)\right), y^{\prime} \mapsto 0\right]}
\end{array}
$$

## Detecting Non-Termination (1/4) $\quad f(t t, x, y) \rightarrow f(g t(x, y), d b l(x), s(y))$

Some steps further
After also narrowing with times and cleaning the pattern rule.
Check whether the pattern substitutions of the right-hand side are specializations of the pattern substitutions of the left-hand side

$$
\begin{array}{ccc}
\text { Base term } & \text { Pumping substitution } & \text { Closing substitution } \\
f\left(t t, s^{2}\left(x^{\prime}\right), s\left(y^{\prime}\right)\right) & {\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}} & {\left[y^{\prime} \mapsto 0\right]}
\end{array}
$$

## Detecting Non-Termination (2/4) $\quad f(t t, x, y) \rightarrow f(g t(x, y), d b l(x), s(y))$

Let $s \sigma^{n} \mu \hookrightarrow t\left(\sigma^{m} \theta\right)^{n}(\mu v)$ be correct w.r.t. a TRS R, where $\theta$ commutes with both $\sigma$ and $\mu$. If there is a position $\pi$ and some $b \in \mathbb{N}$ such that $s \sigma^{b}=\left.t\right|_{\pi}$, then $R$ is non-terminating.
$s \sigma^{n} \mu \rightarrow_{R}^{+} t\left(\sigma^{m} \theta\right)^{n}(\mu v)$ and if we zoom in on the subterm where $s \sigma^{b}=\left.t\right|_{\pi}$ we get

$$
\begin{aligned}
\left.\mathrm{t}\right|_{\pi}\left(\sigma^{\mathrm{m}} \theta\right)^{\mathrm{n}}(\mu \mathrm{v}) & =\mathrm{s} \sigma^{\mathrm{b}}\left(\sigma^{\mathrm{m}} \theta\right)^{\mathrm{n}}(\mu \mathrm{v}) \\
& =\mathrm{s} \sigma^{m n+b} \mu \theta^{\mathrm{n}} v
\end{aligned}
$$

## Detecting Non-Termination (3/4) $\quad f(t t, x, y) \rightarrow f(g t(x, y), d b l(x), s(y))$

Let $s \sigma^{\mathrm{n}} \mu \hookrightarrow \mathrm{t}\left(\sigma^{\mathrm{m}} \theta\right)^{\mathrm{n}} \mu \vee$ be correct w.r.t. a TRS R, where $\theta$ commutes with both $\sigma$ and $\mu$. If there is a position $\pi$ and some $b \in \mathbb{N}$ such that $s \sigma^{b}=\left.t\right|_{\pi}$, then $R$ is non-terminating.

$$
\begin{array}{ccl}
\text { Base term } & \text { Pumping substitution } & \text { Closing substitution } \\
f\left(t t, s^{2}\left(x^{\prime}\right), s\left(y^{\prime}\right)\right) & {\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n}} & {\left[y^{\prime} \mapsto 0\right]}
\end{array}
$$

## Detecting Non-Termination (4/4) $\quad \mathrm{f}(\mathrm{tt}, \mathrm{x}, \mathrm{y}) \rightarrow \mathrm{f}(\mathrm{gt}(\mathrm{x}, \mathrm{y}), \mathrm{dbl}(\mathrm{x}), \mathrm{s}(\mathrm{y}))$

 TheoremLet $s \sigma^{\mathrm{n}} \mu \hookrightarrow \mathrm{t}\left(\sigma^{\mathrm{m}} \theta\right)^{\mathrm{n}} \mu \vee$ be correct w.r.t. a TRS R, where $\theta$ commutes with both $\sigma$ and $\mu$. If there is a position $\pi$ and some $b \in \mathbb{N}$ such that $s \sigma^{b}=\left.t\right|_{\pi}$, then $R$ is non-terminating. And since $s \sigma=f\left(t t, s^{3}\left(x^{\prime}\right), s^{2}\left(y^{\prime}\right)\right)=f\left(t t, s^{3}\left(x^{\prime}\right), s^{2}\left(y^{\prime}\right)\right)$, there is an infinite reduction sequence and the TRS is non-terminating.

Base term Pumping substitution Closing substitution

$$
f\left(t t, s^{2}\left(x^{\prime}\right), s\left(y^{\prime}\right)\right) \quad\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]^{n} \quad\left[y^{\prime} \mapsto 0\right]
$$

$f\left(t t, s^{3}\left(x^{\prime}\right), s^{2}\left(y^{\prime}\right)\right)\left(\left[x^{\prime} \mapsto s\left(x^{\prime}\right), y^{\prime} \mapsto s\left(y^{\prime}\right)\right]\left[x^{\prime} \mapsto s\left(x^{\prime}\right)\right]\right)^{n}\left(\left[y^{\prime} \mapsto 0\right]\left[x^{\prime} \mapsto s\left(\operatorname{times}\left(s^{2}(0), x^{\prime}\right)\right)\right]\right)$

## Proving Non-Looping Non-Termination Automatically

Recap of the technique

1. Generate pattern rules from the TRS.
2. Modify to avoid empty pattern substitutions.
3. Prepare for narrowing $p \hookrightarrow q$ with $p^{\prime} \hookrightarrow q$ ':
a. Make the base term of $q$ at some position equal to the base term of $p^{\prime}$.
b. Make the pumping substitutions and closing substitutions of the two pattern rules equal.
4. Narrow $p \hookrightarrow q$ with $p^{\prime} \hookrightarrow q^{\prime}$.
5. Check for non-termination of the resulting rule $s \hookrightarrow t$ : is $t$ a specialization of $s$ ?

How is this automated?

## Soundness of the inference rules

For all the inference rules of the form

$$
p_{1} \mapsto q_{1} \quad \cdots \quad p_{k} \hookrightarrow q_{k}
$$

$$
p \hookrightarrow q
$$

If all pattern rules $p_{1} \hookrightarrow q_{1}, \ldots, p_{k} \hookrightarrow q_{k}$ are correct w.r.t. a TRS $R$, then the pattern rule $p \hookrightarrow q$ is also correct w.r.t. $R$.

## Final remarks

## Proving Non-Looping Non-Termination Automatically

- The technique can prove non-termination of looping and non-looping TRS
- Tested on 58 typical non-looping non-terminating TRSs, and were able to prove non-termination in $75.9 \%$ of the non-looping examples
- There are TRSs for which the non-termination cannot be proved with the technique.

