


Rewriting Induction + Linear Arithmetic

=

Decision Procedure

Stephan Falke and Deepak Kapur
(by: Cynthia Kop)

September 14, 2023



Z-Term Rewriting Systems

Terms: term rewriting systems that may include all integers and
linear integer operations
Rules: pairs l → r [φ] of two terms and a constraint

Example:

Divides(x, y) → Divides(−x, y) [x < 0]
Divides(x, y) → Divides(x,−y) [y < 0]
Divides(x, y) → True [y = 0]
Divides(x, y) → False [x > y ∧ y > 0]
Divides(x, y) → Divides(x, y − x) [y ≥ x ∧ x > 0]

Rewriting induction + linear arithmetic = decision procedure 2 / 4 Stephan Falke and Deepak Kapur



Z-Term Rewriting Systems

Terms: term rewriting systems that may include all integers and
linear integer operations
Rules: pairs l → r [φ] of two terms and a constraint
Example:

Divides(x, y) → Divides(−x, y) [x < 0]
Divides(x, y) → Divides(x,−y) [y < 0]
Divides(x, y) → True [y = 0]
Divides(x, y) → False [x > y ∧ y > 0]
Divides(x, y) → Divides(x, y − x) [y ≥ x ∧ x > 0]

Rewriting induction + linear arithmetic = decision procedure 2 / 4 Stephan Falke and Deepak Kapur



Rewriting induction

Given: an equation s ≈ t [φ]

Provides: a number of rules to prove either:

• for all substitutions γ so that φγ is satisfied we have
sγ ↔∗ tγ;

• there exists substitution γ so that φγ is satisfied and not
sγ ↔∗ tγ.

Example equations:

• Divides(x, y) ≈ Divides(Times(z, x), Times(y, z)) [z > 0]

• Divides(x+ 1, y) ≈ Divides(x, y − 1) [x ̸= y]

Rewriting induction + linear arithmetic = decision procedure 3 / 4 Stephan Falke and Deepak Kapur



Rewriting induction

Given: an equation s ≈ t [φ]
Provides: a number of rules to prove either:

• for all substitutions γ so that φγ is satisfied we have
sγ ↔∗ tγ;

• there exists substitution γ so that φγ is satisfied and not
sγ ↔∗ tγ.

Example equations:

• Divides(x, y) ≈ Divides(Times(z, x), Times(y, z)) [z > 0]

• Divides(x+ 1, y) ≈ Divides(x, y − 1) [x ̸= y]

Rewriting induction + linear arithmetic = decision procedure 3 / 4 Stephan Falke and Deepak Kapur



Rewriting induction

Given: an equation s ≈ t [φ]
Provides: a number of rules to prove either:

• for all substitutions γ so that φγ is satisfied we have
sγ ↔∗ tγ;

• there exists substitution γ so that φγ is satisfied and not
sγ ↔∗ tγ.

Example equations:

• Divides(x, y) ≈ Divides(Times(z, x), Times(y, z)) [z > 0]

• Divides(x+ 1, y) ≈ Divides(x, y − 1) [x ̸= y]

Rewriting induction + linear arithmetic = decision procedure 3 / 4 Stephan Falke and Deepak Kapur



Rewriting induction

Given: an equation s ≈ t [φ]
Provides: a number of rules to prove either:

• for all substitutions γ so that φγ is satisfied we have
sγ ↔∗ tγ;

• there exists substitution γ so that φγ is satisfied and not
sγ ↔∗ tγ.

Example equations:

• Divides(x, y) ≈ Divides(Times(z, x), Times(y, z)) [z > 0]

• Divides(x+ 1, y) ≈ Divides(x, y − 1) [x ̸= y]

Rewriting induction + linear arithmetic = decision procedure 3 / 4 Stephan Falke and Deepak Kapur



Rewriting induction

Given: an equation s ≈ t [φ]
Provides: a number of rules to prove either:

• for all substitutions γ so that φγ is satisfied we have
sγ ↔∗ tγ;

• there exists substitution γ so that φγ is satisfied and not
sγ ↔∗ tγ.

Example equations:

• Divides(x, y) ≈ Divides(Times(z, x), Times(y, z)) [z > 0]

• Divides(x+ 1, y) ≈ Divides(x, y − 1) [x ̸= y]

Rewriting induction + linear arithmetic = decision procedure 3 / 4 Stephan Falke and Deepak Kapur



Paper claim

We can use the rules of rewriting induction to
decide

whether or not an equation is satisfied.

Rewriting induction + linear arithmetic = decision procedure 4 / 4 Stephan Falke and Deepak Kapur


