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Preliminaries

Definition (Probabilistic Turing Machine (PTM))
A probabilistic Turing machine (PTM) is a non-deterministic Turing machine that chooses
between the available transitions at each point according to some probability distribution.

Definition (BPP)
The complexity class BPP (Bounded Probabilistic Polynomial time) is the class of sets L that
are recognized in polynomial time by a PTM M with error probability bounded away from 1

2 , i.e.
for some ε > 0 and every x

x ∈ L ⇐⇒ Pr(M (x) = 1) > 1
2 + ε

x 6∈ L ⇐⇒ Pr(M (x) = 0) > 1
2 + ε

Theorem
A ∈ BPP if and only if for all polynomials p there is a probabilistic Turing machine recognizing
A in polynomial time with error probability ≤ 1

2p(n) .
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Preliminaries

Definition (Circuits)
A circuit is a directed acyclic graph in which every node (gate) is either an input node, labeled
by one of the n input bits, an AND gate (∧), an OR gate (∨), or a NOT gate (¬). One of these
gates is designated as the output gate. The size of a circuit is the number of gates.

Definition (Family of Circuits Computes a Language)
A family of circuits {Cn}n∈N computes a language L ⊆ {0, 1}∗ if for every length n and every
x ∈ {0, 1}n,

x ∈ L ⇐⇒ Cn(x) = 1
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Main Theorem

Theorem
If there exists a hard to compute function f ∈ E = TIME(2O(n)) then P = BPP.

Definition (Hard to Compute Function)
We say a boolean function f is hard to compute if computing f on input size n requires a circuit
of size 2Ω(n).
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Derandomization

Definition (Pseudorandom Generator (PRG))
G = {Gn : {0, 1}l(n) → {0, 1}n}, denoted by G : l → n is called a pseudorandom generator if,
for any circuit C of size n:

|Pr(C (y) = 1)− Pr(C (G(x)) = 1)| ≤ 1
n

where y is chosen uniformly in {0, 1}n and x ∈ {0, 1}l(n).
G is a quick pseudorandom generator if G ∈ TIME(2O(l)).

Lemma
If there exists a quick pseudorandom generator G : l → n, then for A ∈ BPP that can be
computed by a PTM in polynomial time p = p(n), A can be computed by a deterministic TM
running in time 2O(l(p2)).

Jorrit de Boer Hardness vs. Randomness 24 January 2024 7 / 24



Derandomization Proof

Definition (Pseudorandom Generator (PRG))
Pseudorandom generator G : l → n: for any circuit C of size n: |Pr(C(y) = 1)− Pr(C(G(x)) = 1)| ≤ 1

n for
y ∈ {0, 1}n and x ∈ {0, 1}l uniformly random. G is quick: G ∈ TIME(2O(l)).

Lemma
If there exists a quick PRG G : l(n) → n, then for A ∈ BPP computed by a PTM in polynomial time p = p(n),
then A can be computed by a deterministic TM running in time 2O(l(p2)).

Proof: Take A ∈ BPP and MA a PTM that computes it:
a ∈ A ⇐⇒ Pr(MA(a) = 1) > 2

3 a 6∈ A ⇐⇒ Pr(MA(a) = 0) > 2
3

MA runs in time p, so it uses at most p random bits. MA(a) : {0, 1}p → {0, 1}. Circuit C of size p2 that
computes MA(a). So, for Gp2 : {0, 1}l(p2) → {0, 1}p2

, C = MA(a): |Pr(C(y) = 1)−Pr(C(G(x)) = 1)| ≤ 1
p2

Pr(C(G(x)) = 1) ≥ Pr(C(y) = 1)− 1
p2 >

2
3 − 1

p2 >
1
2

Try all inputs {0, 1}l(p2) and take a majority. Deterministic and runs in time 2l(p2) · 2O(l(p2)) = 2O(l(p2)).
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Anyone who attempts to generate random numbers by deterministic means is, of course, living in a state of sin.
- John von Neumann

Random number generation is too important to be left to chance. - Robert Coveyou
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Highly Unpredictable Function

Definition
We say a boolean function f : {0, 1}m → {0, 1} is Highly Unpredictable if, for some ε > 0, for
every circuit C of size at most 2εm:∣∣∣∣Pr (C (x) = f (x))− 1

2

∣∣∣∣ < 1
2εm

where x is chosen uniformly random in {0, 1}m.
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Nearly Disjoint Sets

Definition
Collection of sets S = {S1, . . . , Sn}, Si ⊂ {1, . . . , l} is called (k,m)-design if:

1 For all i:
|Si | = m

2 For all i 6= j:
|Si ∩ Sj | ≤ k
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Nearly Disjoint Sets

Definition
For f : {0, 1}m → {0, 1} we define fS : {0, 1}l → {0, 1}n as the bit string of length n computed
by applying f to the subsets of the x’s denoted by the sets in S :

fS(x) = f (xS1) f (xS2) . . . f (xSn−1) f (xSn)

Example
S1 = {1, 3, 6, 20, 23}, S2 = {1, 5, 9, 21, 24} . . .

fS(x1 x2 . . . xl−1 xl) = f (x1 x3 x6 x20 x23) f (x1 x5 x9 x21 x24) . . .
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Nearly Disjoint Sets
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Nearly Disjoint Sets Make a PRG

Lemma
Let m, n, l be integers; let f : {0, 1}m → {0, 1} be a “Highly Unpredictable” function:
For some ε > 0, for every circuit C of size at most 2εm = n2:∣∣∣∣Pr (C (x) = f (x))− 1

2

∣∣∣∣ < 2−εm = n−2

where x is chosen uniformly random in {0, 1}m.
Let S = {S1, . . . , Sn}, Si ⊂ {1, . . . , l} with l = O(log n) be a (log n, 2

ε log n) design with, i.e.
|Si | = m = 2

ε log n and |Si ∩ Sj | ≤ log n.
Then G : l → n given by G(x) = fS(x) is a pseudorandom generator.
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Nearly Disjoint Sets Make a PRG Proof

Lemma
Let f : {0, 1}m → {0, 1} be a “Highly Unpredictable” function: for every circuit C of size at most n2:∣∣Pr (C(x) = f (x))− 1

2

∣∣ < n−2 where x is chosen uniformly random in {0, 1}m.
Let S = {S1, . . . ,Sn}, Si ⊂ {1, . . . , l} be nearly disjoint sets. Then G : l → n given by G(x) = fS(x) is a
pseudorandom generator.

Proof Sketch: Proof by contradiction, G is not a pseudorandom generator, then w.l.o.g. for some circuit C of
size n:

Pr(C(y) = 1)− Pr(C(G(x)) = 1) > 1/n
for y ∈ {0, 1}n and x ∈ {0, 1}l chosen uniformly.
Define distribution Ei on {0, 1}n: the first i bits are from fS(x) for x ∈ {0, 1}l, and the other n − i bits
uniformly random. And let pi = Pr(C(z) = 1) for z ∈ Ei uniformly.

p0 − pn > 1/n
so for some i:

pi−1 − pi > 1/n2

Construct circuit D which takes y1, . . . , yi−1 and predicts yi.

Pr(D(y1, . . . , yi−1) = yi)−
1
2 >

1
n2
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Nearly Disjoint Sets Make a PRG Proof

Lemma
Let f : {0, 1}m → {0, 1} be a “Highly Unpredictable” function: for every circuit C of size at most n2:∣∣Pr (C(x) = f (x))− 1

2

∣∣ < n−2 where x is chosen uniformly random in {0, 1}m.
Let S = {S1, . . . ,Sn}, Si ⊂ {1, . . . , l} be nearly disjoint sets. Then G : l → n given by G(x) = fS(x) is a
pseudorandom generator.

Proof Sketch Continued:
Pr(D(y1, . . . , yi−1) = yi)−

1
2 >

1
n2

yi = f (xSi ) = f (x1 . . . xm)

Pr(D(y1, . . . , yi−1) = f (x1 . . . xm))− 1
2 >

1
n2

Circuit D′ of size ≤ n2:
Pr(D′(x1 . . . xm) = f (x1 . . . xm))− 1

2 >
1

n2

Contradiction! So G is a PRG.
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Mildly Unpredictable Function

Definition (Mildly Unpredictable Function)
We say a boolean function f : {0, 1}n → {0, 1} is “Mildly Unpredictable” if for all circuits C of
size at most 2Ω(n) :

Pr(Cn(x) 6= f (x)) > n−2

for x chosen uniformly random in {0, 1}n
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XOR Lemma

Lemma (Yao’s XOR Lemma)
If f : {0, 1}n → {0, 1} is a mildly unpredictable function, i.e. for all circuits C of size at most 2Ω(n):

Pr(Cn(x) 6= f (x)) > n−2

then f ⊕(k), which is defined as follows:

f ⊕(k)(x1, . . . , xk) = f (x1)⊕ · · · ⊕ f (xk)

, for k = O(n3) is a highly unpredictable function. So, for some ε > 0, for every circuit C of size 2εn:∣∣Pr (C(x) = f ⊕(x)
)
− 1/2

∣∣ < 2εn

Problem
This XOR Lemma blows up the input by a polynomial amount: f ⊕(k) : {0, 1}n·O(n3) → {0, 1}.
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Derandomized XOR Lemma

Lemma (Derandomized Yao’s XOR Lemma)
If f : {0, 1}n → {0, 1} is a mildly unpredictable function, i.e. for all circuits C of size at most
2Ω(n):

Pr(Cn(x) 6= f (x)) > n−2

then f ⊕(k), which is defined as follows:

f ⊕(k)(x1, . . . , xk) = f (x1)⊕ · · · ⊕ f (xk)

, for k = O(1) is a highly unpredictable function. So, for some ε > 0, for every circuit C of size
2εn: ∣∣Pr (C (x) = f ⊕(x)

)
− 1/2

∣∣ < 2εn
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Error Correcting Codes

Lemma
If there is a hard to compute function f ∈ E , i.e. computing f on input size n requires a circuit
of size 2Ω(n), then, there exists a function h ∈ E that is mildly unpredictable: for every circuit C
of size 2Ω(n)

Pr(Cn(x) 6= h(x)) > n−2

for x chosen uniformly random in {0, 1}n.

Proof Sketch: View f : {0, 1}n → {0, 1} as a message of size L = 2n. Apply an error
correcting code ENC : {0, 1}L → {0, 1}L̂.
View this new message as a function f̂ : {0, 1}log L̂ → {0, 1}
Any circuit C trying to compute this function f̂ must make n−2 mistakes. If not, we can apply
the efficient decoder DEC to retrieve f and compute f efficiently.
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Theorem
If there exists a hard to compute function f ∈ E = TIME(2O(n)) then P = BPP.
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