Hardness vs. Randomness

Jorrit de Boer

24 January 2024

- Noam Nisan, Avi Wigderson: Hardness vs. Randomness, J. Comput. Syst. Sci., 49(2):149-167 1994
- Russell Impagliazzo, Avi Wigderson: **P=BPP unless E has sub-exponential circuits: Derandomizing the XOR Lemma**, In Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC '97, pages 220-229, New York, NY, USA, ACM. 1997

Definition (Probabilistic Turing Machine (PTM))

A probabilistic Turing machine (PTM) is a non-deterministic Turing machine that chooses between the available transitions at each point according to some probability distribution.

Definition (BPP)

The complexity class BPP (Bounded Probabilistic Polynomial time) is the class of sets L that are recognized in polynomial time by a PTM M with error probability bounded away from $\frac{1}{2}$, i.e. for some $\epsilon > 0$ and every x

•
$$x \in L \iff \Pr(M(x) = 1) > \frac{1}{2} + \epsilon$$

•
$$x \notin L \iff \Pr(M(x) = 0) > \frac{1}{2} + \epsilon$$

Theorem

 $A \in BPP$ if and only if for all polynomials p there is a probabilistic Turing machine recognizing A in polynomial time with error probability $\leq \frac{1}{2^{p(n)}}$.

Definition (Circuits)

A circuit is a directed acyclic graph in which every node (gate) is either an input node, labeled by one of the *n* input bits, an AND gate (\land), an OR gate (\lor), or a NOT gate (\neg). One of these gates is designated as the output gate. The size of a circuit is the number of gates.

Definition (Family of Circuits Computes a Language)

A family of circuits $\{C_n\}_{n\in\mathbb{N}}$ computes a language $L\subseteq\{0,1\}^*$ if for every length n and every $x\in\{0,1\}^n$,

$$x \in L \iff C_n(x) = 1$$

Theorem

If there exists a hard to compute function $f \in E = TIME(2^{O(n)})$ then P = BPP.

Definition (Hard to Compute Function)

We say a boolean function f is hard to compute if computing f on input size n requires a circuit of size $2^{\Omega(n)}$.

Hard to Compute Function



Definition (Pseudorandom Generator (PRG))

 $G = \{G_n : \{0,1\}^{l(n)} \to \{0,1\}^n\}$, denoted by $G : l \to n$ is called a *pseudorandom generator* if, for any circuit C of size n:

$$\Pr(C(y) = 1) - \Pr(C(G(x)) = 1)| \le \frac{1}{n}$$

where y is chosen uniformly in $\{0,1\}^n$ and $x \in \{0,1\}^{l(n)}$. G is a quick pseudorandom generator if $G \in TIME(2^{O(l)})$.

Lemma

If there exists a quick pseudorandom generator $G : l \to n$, then for $A \in BPP$ that can be computed by a PTM in polynomial time p = p(n), A can be computed by a deterministic TM running in time $2^{O(l(p^2))}$.

Derandomization Proof

Definition (Pseudorandom Generator (PRG))

Pseudorandom generator $G: l \to n$: for any circuit C of size n: $|\Pr(C(y) = 1) - \Pr(C(G(x)) = 1)| \le \frac{1}{n}$ for $y \in \{0, 1\}^n$ and $x \in \{0, 1\}^l$ uniformly random. G is quick: $G \in TIME(2^{O(l)})$.

Lemma

If there exists a quick PRG $G : l(n) \to n$, then for $A \in BPP$ computed by a PTM in polynomial time p = p(n), then A can be computed by a deterministic TM running in time $2^{O(l(p^2))}$.

Proof: Take $A \in BPP$ and M_A a PTM that computes it:

• $a \in A \iff \Pr(M_A(a) = 1) > \frac{2}{3}$ M_A runs in time p, so it uses at most p random bits. $M_A(a) : \{0,1\}^p \to \{0,1\}$. Circuit C of size p^2 that computes $M_A(a)$. So, for $G_{p^2} : \{0,1\}^{l(p^2)} \to \{0,1\}^{p^2}$, $C = M_A(a)$: $|\Pr(C(y) = 1) - \Pr(C(G(x)) = 1)| \le \frac{1}{p^2}$

$$\Pr(C(G(x)) = 1) \ge \Pr(C(y) = 1) - \frac{1}{p^2} > \frac{2}{3} - \frac{1}{p^2} > \frac{1}{2}$$

Try all inputs $\{0,1\}^{l(p^2)}$ and take a majority. Deterministic and runs in time $2^{l(p^2)} \cdot 2^{O(l(p^2))} = 2^{O(l(p^2))}$.

Anyone who attempts to generate random numbers by deterministic means is, of course, living in a state of sin. - John von Neumann

Random number generation is too important to be left to chance. - Robert Coveyou

Definition

We say a boolean function $f : \{0, 1\}^m \to \{0, 1\}$ is Highly Unpredictable if, for some $\epsilon > 0$, for every circuit C of size at most $2^{\epsilon m}$:

$$\Pr(C(x) = f(x)) - \frac{1}{2} < \frac{1}{2^{\epsilon m}}$$

where x is chosen uniformly random in $\{0,1\}^m$.

Definition

Collection of sets $S = \{S_1, \ldots, S_n\}$, $S_i \subset \{1, \ldots, l\}$ is called (k, m)-design if: • For all i: • $|S_i| = m$ • For all $i \neq j$: • $|S_i \cap S_j| \leq k$

Definition

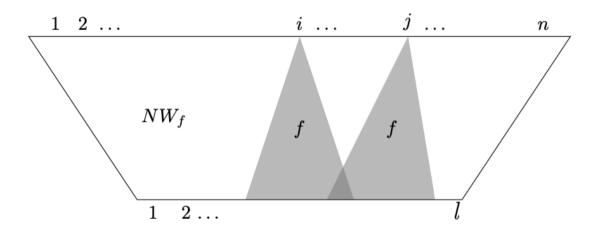
For $f : \{0,1\}^m \to \{0,1\}$ we define $f_S : \{0,1\}^l \to \{0,1\}^n$ as the bit string of length n computed by applying f to the subsets of the x's denoted by the sets in S:

$$f_S(x) = f(x_{S_1}) f(x_{S_2}) \dots f(x_{S_{n-1}}) f(x_{S_n})$$

Example

$$S_1 = \{1, 3, 6, 20, 23\}, S_2 = \{1, 5, 9, 21, 24\} \dots$$

$$f_S(x_1 \ x_2 \ \dots \ x_{l-1} \ x_l) = f(x_1 \ x_3 \ x_6 \ x_{20} \ x_{23}) \ f(x_1 \ x_5 \ x_9 \ x_{21} \ x_{24}) \ \dots$$



Let m, n, l be integers; let $f : \{0, 1\}^m \to \{0, 1\}$ be a "Highly Unpredictable" function: For some $\epsilon > 0$, for every circuit C of size at most $2^{\epsilon m} = n^2$:

$$\left| \Pr\left(C(x) = f(x) \right) - \frac{1}{2} \right| < 2^{-\epsilon m} = n^{-2}$$

where x is chosen uniformly random in $\{0,1\}^m$. Let $S = \{S_1, \ldots, S_n\}$, $S_i \subset \{1, \ldots, l\}$ with $l = O(\log n)$ be a $(\log n, \frac{2}{\epsilon} \log n)$ design with, i.e. $|S_i| = m = \frac{2}{\epsilon} \log n$ and $|S_i \cap S_j| \le \log n$. Then $G : l \to n$ given by $G(x) = f_S(x)$ is a pseudorandom generator.

Let $f: \{0,1\}^m \to \{0,1\}$ be a "Highly Unpredictable" function: for every circuit C of size at most n^2 : $|\Pr(C(x) = f(x)) - \frac{1}{2}| < n^{-2}$ where x is chosen uniformly random in $\{0,1\}^m$. Let $S = \{S_1, \ldots, S_n\}$, $S_i \subset \{1, \ldots, l\}$ be nearly disjoint sets. Then $G: l \to n$ given by $G(x) = f_S(x)$ is a pseudorandom generator.

Proof Sketch: Proof by contradiction, G is not a pseudorandom generator, then w.l.o.g. for some circuit C of size n:

$$\Pr(C(y) = 1) - \Pr(C(G(x)) = 1) > 1/n$$

for $y \in \{0, 1\}^n$ and $x \in \{0, 1\}^l$ chosen uniformly. Define distribution E_i on $\{0, 1\}^n$: the first *i* bits are from $f_S(x)$ for $x \in \{0, 1\}^l$, and the other n - i bits uniformly random. And let $p_i = \Pr(C(z) = 1)$ for $z \in E_i$ uniformly.

$$p_0 - p_n > 1/n$$

so for some *i*:

$$p_{i-1} - p_i > 1/n^2$$

Construct circuit D which takes y_1, \ldots, y_{i-1} and predicts y_i .

$$\Pr(D(y_1, \dots, y_{i-1}) = y_i) - \frac{1}{2} > \frac{1}{n^2}$$

Let $f: \{0,1\}^m \to \{0,1\}$ be a "Highly Unpredictable" function: for every circuit C of size at most n^2 : $|\Pr(C(x) = f(x)) - \frac{1}{2}| < n^{-2}$ where x is chosen uniformly random in $\{0,1\}^m$. Let $S = \{S_1, \ldots, S_n\}, S_i \subset \{1, \ldots, l\}$ be nearly disjoint sets. Then $G: l \to n$ given by $G(x) = f_S(x)$ is a pseudorandom generator.

Proof Sketch Continued:

$$\Pr(D(y_1, \dots, y_{i-1}) = y_i) - \frac{1}{2} > \frac{1}{n^2}$$

$$y_i = f(x_{S_i}) = f(x_1 \dots x_m)$$

$$\Pr(D(y_1,\ldots,y_{i-1}) = f(x_1\ldots x_m)) - \frac{1}{2} > \frac{1}{n^2}$$

Circuit D' of size $\leq n^2$:

$$\Pr(D'(x_1...x_m) = f(x_1...x_m)) - \frac{1}{2} > \frac{1}{n^2}$$

Contradiction! So G is a PRG.

Jorrit de Boer

Definition (Mildly Unpredictable Function)

We say a boolean function $f: \{0,1\}^n \to \{0,1\}$ is "Mildly Unpredictable" if for all circuits C of size at most $2^{\Omega(n)}$:

$$\Pr(C_n(x) \neq f(x)) > n^{-2}$$

for x chosen uniformly random in $\{0,1\}^n$

Lemma (Yao's XOR Lemma)

If $f: \{0,1\}^n \to \{0,1\}$ is a mildly unpredictable function, i.e. for all circuits C of size at most $2^{\Omega(n)}$:

$$\Pr(C_n(x) \neq f(x)) > n^{-2}$$

then $f^{\oplus(k)}$, which is defined as follows:

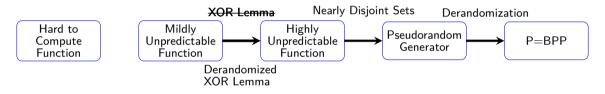
$$f^{\oplus(k)}(x_1,\ldots,x_k) = f(x_1) \oplus \cdots \oplus f(x_k)$$

, for $k = O(n^3)$ is a highly unpredictable function. So, for some $\epsilon > 0$, for every circuit C of size $2^{\epsilon n}$:

$$\left|\Pr\left(C(x) = f^{\oplus}(x)\right) - 1/2\right| < 2^{\epsilon n}$$

Problem

This XOR Lemma blows up the input by a polynomial amount: $f^{\oplus(k)}: \{0,1\}^{n \cdot O(n^3)} \to \{0,1\}$.



Lemma (Derandomized Yao's XOR Lemma)

If $f : \{0,1\}^n \to \{0,1\}$ is a mildly unpredictable function, i.e. for all circuits C of size at most $2^{\Omega(n)}$:

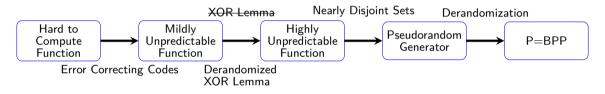
$$\Pr(C_n(x) \neq f(x)) > n^{-2}$$

then $f^{\oplus(k)}$, which is defined as follows:

$$f^{\oplus(k)}(x_1,\ldots,x_k) = f(x_1) \oplus \cdots \oplus f(x_k)$$

, for k = O(1) is a highly unpredictable function. So, for some $\epsilon > 0$, for every circuit C of size $2^{\epsilon n}$:

$$\left|\Pr\left(C(x) = f^{\oplus}(x)\right) - 1/2\right| < 2^{\epsilon n}$$



If there is a hard to compute function $f \in E$, i.e. computing f on input size n requires a circuit of size $2^{\Omega(n)}$, then, there exists a function $h \in E$ that is mildly unpredictable: for every circuit C of size $2^{\Omega(n)}$

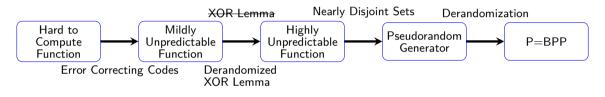
$$\Pr(C_n(x) \neq h(x)) > n^{-2}$$

for x chosen uniformly random in $\{0,1\}^n$.

Proof Sketch: View $f : \{0, 1\}^n \to \{0, 1\}$ as a message of size $L = 2^n$. Apply an error correcting code $ENC : \{0, 1\}^L \to \{0, 1\}^{\hat{L}}$.

View this new message as a function $\hat{f}: \{0,1\}^{\log \hat{L}} \rightarrow \{0,1\}$

Any circuit C trying to compute this function \hat{f} must make n^{-2} mistakes. If not, we can apply the efficient decoder DEC to retrieve f and compute f efficiently.



Theorem

If there exists a hard to compute function $f \in E = TIME(2^{O(n)})$ then P = BPP.