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Overview

• The papers
• Hartmanis and Stearns’ results
• Proven results
• Morphisms and the second result
• The other results and their proof
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Hartmanis and Stearns’ results

Theorem 10
All rational numbers are computable in linear time.

Theorem 11
All algebraic numbers are computable in quadratic time.

Theorem 12
There are transcendental numbers that are computable in linear time.
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The Hartmanis-Stearns problem

The Hartmanis-Stearns problem

Do there exist irrational algebraic numbers for which the first n binary digits can be
computed in O(n) operations by a multitape deterministic Turing machine?



Proven results
• Enumerators versus transducers

Cobham’s first claim
The base-b expansion of an algebraic irrational number cannot be generated by a
uniform morphism or, equivalently, by a finite automaton.

Cobham’s second claim
The base-b expansion of an algebraic irrational number cannot be generated by a
morphism with exponential growth.

Theorem 1.3
The base-b expansion of an algebraic irrational number cannot be generated by a
deterministic pushdown automaton
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Morphims

• A map A → A
∗ extended to a map ff ∶ A∗

→ A
∗ is a morphism.

• The incidence matrix of ff isMff. To define it, order the elements of A as
A = {a1; a2; : : : ; ad}. ThenMff is defined by (Mff)i ;j = ∣ff(aj )∣ai

• A morphism has exponential growth if the spectral radius ofMff is bigger than
one.
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Proposition ABL

Diophantine exponent

Let ȷ be a real number. Then
dio(¸) ∶= supȷ{ȷ ∣ ∃U; V s.t. UV ˛ prefix of ¸ and ∣UV ˛ ∣

∣UV ∣ ≥ ȷ}

Proposition ABL

Let ‰ be a real number with ‰b ∶= 0:a1a2 : : : . Suppose that dio(¸) > 1 where
¸ ∶= a1a2. Then ‰ is either rational or transcendental.
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Cobham’s second claim

Proposition 4.3

Let ¸ be an infinite sequence that can be generated by a morphism with
exponential growth. Then dio(¸) > 1.

Cobham’s second claim
The base-b expansion of an algebraic irrational number cannot be generated by a
morphism with exponential growth.

• Proof: combine Propositions ABL and 4.3.
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• Last in first out stack

• Deterministic
• Transducer
• ›−moves
• Configurations

(-equivalence)
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Proposition 4.6

Proposition 4.6

Let ‰ be a real number generated by a k -pushdown automaton. If there exist two
distinct positive integers n and n′ such that C(n) ∼ C(n′), then ‰ is either rational or
transcendental.



Proposition 4.6 (Proof)

• Proof: Let ‰ be a real number and let n < n
′ be positive integers such that

C(n) ∼ C(n′). Let ¸ ∶= (ai )i≥1 be the output of the pushdown automaton that
generates ‰ such that ‰k = 0:a1a2 : : : . Then by definition a[wnw ]k = a[wn′w ]k for
all w ∈ Σ

∗
k .

• Now for a positive integer l we get ak ln+i = ak ln′+i for all i ∈ [0; k l − 1].
• Now take U = a1a2 : : : ak ln−1 and V = ak

l
nak

l
n + 1 : : : ak ln′−1. Then UV

1+ 1
n′−n

is a prefix of ¸. We also get ∣UV 1+ 1
n′−n ∣

∣UV ∣ = 1 + 1

n′−1/k l ≥ 1 + 1

n′
.

• Now we have dio(¸) ≥ 1 + 1

n′
> 1 and then proposition ABL gives that ‰ is

rational or transcendental.
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Cobham’s first claim

Cobham’s first claim
The base-b expansion of an algebraic irrational number cannot be generated by a
uniform morphism or, equivalently, by a finite automaton.

Proof: There is a finite amount of states and an infinite number of possible inputs,
so the pigeonhole principle gives that there are two inputs that end up in the same
state. Then Proposition 4.6 gives the result.
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Theorem 1.3
The base-b expansion of an algebraic irrational number cannot be generated by a
deterministic pushdown automaton

• Let ‰ be a real number generated by a pushdown automaton. Let S(w ) denote
the contents of the stack after reading input w . Then we have the stackheight
H(w ) ∶= ∣S(w )∣.

• For all positive integersm we defineHm ∶= {w ∈ Rk ∣H(w ) ≤ m}
• Case 1: There is am such thatHm is infinite. There is a finite amount of
configurations with a stackheight of at mostm, but we have an infinite amount
of inputs, so the pigeonhole principle gives that there must be a n ≠ n

′ with
C(n) ∼ C(n′) and then we have proposition 4.6 again to give that
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Proof of Theorem (continued)

• Case 2: allHm are finite. We pick a vm ∈ Hm with maximal length. Then
because ofHm ⊆ Hm + 1, we have ∣vm∣ ≤ ∣vm+1∣. Furthermore we have
Rk = ⋃∞

m=1Hk which implies that the set {vm ∣m ≥ 1} is infinite.

• Because of this definition, we haveH(vm) < H(vmw ) for all w ∈ Σ
∗.

• Takem big enough so we have ∣vm∣ > ∣v1∣ so we haveH(vm) > 1. For suchm,
we decompose S(vm) as S(vm) = Xmzm. This means that Xm is a prefix of
S(vmw ) for all w ∈ Σ

∗.
• This means that (qvm ; S(vm)) ∼ (qvm ; zm). Note that (qvm ; zm) ∈ Q × Γ which is
a finite set, but {vm ∣m ≥ 1} is an infinite set.

• The pigeonhole principle gives that there must twom ≠ m
′ such that

(qvm ; S(vm)) ∼ (qvm′ ; S(vm′)) and then proposition 4.6 gives that ‰ is rational or
transcendental.
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