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History of automatic differentiation

Computing derivative in computer programs.

1 Forward mode described in (one of the) first CS PhD dissertations in 1964.

2 Origin of reverse mode is not entirely clear, but most likely a Finnish master thesis from
1970.

3 Many usecases:
1 Scientific computing
2 Machine learning, although only (relatively) recently has general automatic differentiation

been applied to it
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What it isn’t

What it isn’t: Numerical differentiation

1 Finite difference methods

2 Easy to implement,

3 Inherently imprecise due to rounding and floating point truncation.

4 There are better methods that improve rounding errors, but they increase complexity and
still suffer from truncation
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What it isn’t: Numerical differentiation

1 Finite difference methods

2 Easy to implement,

Definition of derivative: f ′(x) = limh→0
f (x+h)−f (x)

h

Using some small value dx , we can approximate the derivative: Df (x , dx) = f (x+dx)−f (x)
dx

3 Inherently imprecise due to rounding and floating point truncation.

4 There are better methods that improve rounding errors, but they increase complexity and
still suffer from truncation
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2 Easy to implement, f ′(x) = limh→0
f (x+h)−f (x)

h

3 Inherently imprecise due to rounding and floating point truncation.
We’re adding a really small number to a (fairly) large number, and subtracting numbers
that are almost the same.

4 There are better methods that improve rounding errors, but they increase complexity and
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What it isn’t: Symbolic differentiation

1 Manipulating expressions using known rules
Chain rule: (f (g(x)))′ = f ′(g(x)) · g ′(x)
Product rule: (f · g)′ = f ′ · g + f · g ′

2 CAS engines: Mathematica, Maxima, Maple

3 Less efficient for runtime calculations, as expressions can grow exponentially
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1 Still based on chain rule, but we don’t care about symbolic expression.

2 Based on principle that any computation is composition of elementary functions with
known derivative

3 Also allows to differentiate algorithms beyond closed-form expressions: using branching,
loops etc.
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Computational graph

We can express this composition of basic functions as a computational graph.

y = sin((x1 − x2) · (x1 − x2)) can be represented as

Triangles are the elementary functions, although I will leave them out later.
This construction allows node sharing, which is important for performance, as we only have to
calculate things once.
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Forward mode

a

b

c

d

e

f Let’s say we want to compute df
da with inputs i1, i2, i3.

For any node x , by ϕx we denote the function of its
inputs (instead of the triangles before).

Idea: for each node x ∈ {a,b,c,d,e,f} compute two values:
x and x ′.
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Let’s say we want to compute df

da with inputs i1, i2, i3.
For any node x , by ϕx we denote the function of its inputs.
Idea: for each node x ∈ {a,b,c,d,e,f} compute two values:
x and x ′, where x ′ = dx

da .
We start by initializing the starting values of the nodes
without inputs (so a,b,c).

a = i1

b = i2

c = i3

d = ϕd(a, b, c) d ′ = a′ · ∂
∂aϕd(a, b, c) + b′ · ∂

∂bϕd(a, b, c) + c ′ · ∂
∂cϕd(a, b, c)

e = ϕe(a, b, c) e′ = a′ · ∂
∂aϕe(a, b, c) + b′ · ∂

∂bϕe(a, b, c) + c ′ · ∂
∂cϕe(a, b, c)

f = ϕf (d , e) f ′ = d ′ · ∂
∂d ϕf (d , e) + e ·′ ∂

∂eϕd(a, b, c)
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For any node x , by ϕx we denote the function of its inputs.
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want the derivative. The derivatives of the other nodes
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For any node x , by ϕx we denote the function of its inputs.
Idea: for each node x ∈ {a,b,c,d,e,f} compute two values:
x and x ′, where x ′ = dx
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and the derivatives using the chain rule.
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For any node x , by ϕx we denote the function of its inputs.
Idea: for each node x ∈ {a,b,c,d,e,f} compute two values:
x and x ′, where x ′ = dx
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for all the other input variables, so in this case 3 times.
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Let’s say we want to compute df
da with inputs i1, i2, i3.

For any node x , by ϕx we denote the function of its inputs.
Idea: for each node x ∈ {a,b,c,d,e,f} compute two values:
x and x ′, where x ′ = dx

da .
On the other hand, if we have another output g , in one
round we also compute dg

da .
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c = i3 c ′ = 0
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∂aϕd(a, b, c) + b′ · ∂

∂bϕd(a, b, c) + c ′ · ∂
∂cϕd(a, b, c)

e = ϕe(a, b, c) e′ = a′ · ∂
∂aϕe(a, b, c) + b′ · ∂
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For any node x , by ϕx we denote the function of its
inputs (instead of the triangles before).

Idea: for each node x ∈ {a,b,c,d,e,f} compute two values:
x and x ′.



Introduction Automatic Differentiation Compositional backpropagation Examples

Reverse

Reverse mode

a

b

c

d

e

f We again want to compute df
da with inputs i1, i2, i3.

For any node x , by ϕx we denote the function of its
inputs.
Idea: for each node x ∈ {a,b,c,d,e,f} compute two values:
x and x ′.



Introduction Automatic Differentiation Compositional backpropagation Examples

Reverse

Reverse mode

a

b

c

d

e

f

We again want to compute df
da with inputs i1, i2, i3.

For any node x , by ϕx we denote the function of its inputs.
Idea: for each node x ∈ {a,b,c,d,e,f} compute two values:
x and x ′.
Still the value of that node



Introduction Automatic Differentiation Compositional backpropagation Examples

Reverse

Reverse mode

a

b

c

d

e

f We again want to compute df
da with inputs i1, i2, i3.

For any node x , by ϕx we denote the function of its inputs.
Idea: for each node x ∈ {a,b,c,d,e,f} compute two values:
x and x ′.
This time x ′ is the derivative of f to that node, so x ′ =
df
dx .
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Forward pass

We again want to compute df
da with inputs i1, i2, i3.

For any node x , by ϕx we denote the function of its inputs.
Idea: for each node x ∈ {a,b,c,d,e,f} compute two values:
x and x ′, where x ′ = df

dx .
We start by initializing the starting values of the nodes
without inputs (so a,b,c).

a = i1

a′ = d ′ · ∂
∂aϕd(d , e) + e′ · ∂

∂aϕe(d , e)

= df
da

b = i2

b′ = d ′ · ∂
∂bϕd(d , e) + e′ · ∂

∂bϕe(d , e)

= df
db

c = i3

c ′ = d ′ · ∂
∂cϕd(d , e) + e′ · ∂

∂cϕe(d , e)

= df
dc

d = ϕd(a, b, c) d ′ = f ′ · ∂
∂d ϕf (d , e)

e = ϕe(a, b, c) e′ = f ′ · ∂
∂eϕf (d , e)

f = ϕf (d , e) f ′ = df
df = 1
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We again want to compute df
da with inputs i1, i2, i3.

For any node x , by ϕx we denote the function of its inputs.
Idea: for each node x ∈ {a,b,c,d,e,f} compute two values:
x and x ′, where x ′ = df

dx .
Then we can compute the value of further nodes using
their functions.

a = i1

a′ = d ′ · ∂
∂aϕd(d , e) + e′ · ∂

∂aϕe(d , e)

= df
da

b = i2

b′ = d ′ · ∂
∂bϕd(d , e) + e′ · ∂

∂bϕe(d , e)

= df
db

c = i3

c ′ = d ′ · ∂
∂cϕd(d , e) + e′ · ∂

∂cϕe(d , e)

= df
dc

d = ϕd(a, b, c)

d ′ = f ′ · ∂
∂d ϕf (d , e)

e = ϕe(a, b, c)

e′ = f ′ · ∂
∂eϕf (d , e)

f = ϕf (d , e)

f ′ = df
df = 1
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Backward pass

We again want to compute df
da with inputs i1, i2, i3.

For any node x , by ϕx we denote the function of its inputs.
Idea: for each node x ∈ {a,b,c,d,e,f} compute two values:
x and x ′, where x ′ = df

dx .
Then we start the backward pass. By definition of f ′, we
can see it must be 1.

a = i1

a′ = d ′ · ∂
∂aϕd(d , e) + e′ · ∂

∂aϕe(d , e)

= df
da

b = i2

b′ = d ′ · ∂
∂bϕd(d , e) + e′ · ∂

∂bϕe(d , e)

= df
db

c = i3

c ′ = d ′ · ∂
∂cϕd(d , e) + e′ · ∂

∂cϕe(d , e)

= df
dc

d = ϕd(a, b, c)

d ′ = f ′ · ∂
∂d ϕf (d , e)

e = ϕe(a, b, c)

e′ = f ′ · ∂
∂eϕf (d , e)

f = ϕf (d , e) f ′ = df
df = 1



Introduction Automatic Differentiation Compositional backpropagation Examples

Reverse

Reverse mode

a

b

c

d

e

f

Backward pass

We again want to compute df
da with inputs i1, i2, i3.

For any node x , by ϕx we denote the function of its inputs.
Idea: for each node x ∈ {a,b,c,d,e,f} compute two values:
x and x ′, where x ′ = df

dx .
We can once again compute the derivatives using the chain
rule.

a = i1 a′ = d ′ · ∂
∂aϕd(d , e) + e′ · ∂

∂aϕe(d , e)

= df
da

b = i2 b′ = d ′ · ∂
∂bϕd(d , e) + e′ · ∂

∂bϕe(d , e)

= df
db

c = i3 c ′ = d ′ · ∂
∂cϕd(d , e) + e′ · ∂

∂cϕe(d , e)

= df
dc

d = ϕd(a, b, c) d ′ = f ′ · ∂
∂d ϕf (d , e)

e = ϕe(a, b, c) e′ = f ′ · ∂
∂eϕf (d , e)

f = ϕf (d , e) f ′ = df
df = 1
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Backward pass

We again want to compute df
da with inputs i1, i2, i3.

For any node x , by ϕx we denote the function of its inputs.
Idea: for each node x ∈ {a,b,c,d,e,f} compute two values:
x and x ′, where x ′ = df

dx .
Using this algorithm, in one round we compute
df
da ,

df
db and df

da .

a = i1 a′ = d ′ · ∂
∂aϕd(d , e) + e′ · ∂

∂aϕe(d , e) =
df
da

b = i2 b′ = d ′ · ∂
∂bϕd(d , e) + e′ · ∂

∂bϕe(d , e) =
df
db

c = i3 c ′ = d ′ · ∂
∂cϕd(d , e) + e′ · ∂

∂cϕe(d , e) =
df
dc

d = ϕd(a, b, c) d ′ = f ′ · ∂
∂d ϕf (d , e)

e = ϕe(a, b, c) e′ = f ′ · ∂
∂eϕf (d , e)

f = ϕf (d , e) f ′ = df
df = 1
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Backward pass

We again want to compute df
da with inputs i1, i2, i3.

For any node x , by ϕx we denote the function of its inputs.
Idea: for each node x ∈ {a,b,c,d,e,f} compute two values:
x and x ′, where x ′ = df

dx .
On the other hand, if we have another output g , we’d
need another round to also compute dg

da .

a = i1 a′ = d ′ · ∂
∂aϕd(d , e) + e′ · ∂

∂aϕe(d , e) =
df
da

b = i2 b′ = d ′ · ∂
∂bϕd(d , e) + e′ · ∂

∂bϕe(d , e) =
df
db

c = i3 c ′ = d ′ · ∂
∂cϕd(d , e) + e′ · ∂

∂cϕe(d , e) =
df
dc

d = ϕd(a, b, c) d ′ = f ′ · ∂
∂d ϕf (d , e)

e = ϕe(a, b, c) e′ = f ′ · ∂
∂eϕf (d , e)

f = ϕf (d , e) f ′ = df
df = 1
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Reverse

Forward versus reverse mode: Efficiency

Let’s say we are calculating the whole Jacobian of a function

F : Rn → R
m

The complexity of one round is linear in size of the computational graph |G |.

1 Forward mode

One round per input variable.
Whole Jacobian is O(n|G |).

2 Reverse mode

One round per output variable.
Whole Jacobian is O(m|G |).
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Reverse

Forward versus reverse mode: Efficiency

Let’s say we are calculating the whole Jacobian of a function

F : Rn → R
m

The complexity of one round is linear in size of the computational graph |G |.
1 Forward mode

One round per input variable.
Whole Jacobian is O(n|G |).

2 Reverse mode

One round per output variable.
Whole Jacobian is O(m|G |).

Most efficient of the two is dependent on the use case. For deep learning, n can become
extremely large, while m = 1, hence the reason why reverse mode is so widely used.
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What and why

1 Program transformation: doesn’t just take a mathematical function, but concrete code,
and transforms it into more code that you can run.

2 Compositional:
←−
D(tu) =

←−
D(t)

←−
D(u).

For example: t might be a bit of code from some external library. Using this, you only

need
←−
D(t) to be able to compute the derivative of your whole program.

3 Purely logical framework, allows tools from type theory, semantics etc.
Also beneficial for soundness proof and complexity analysis
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Also beneficial for soundness proof and complexity analysis
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Compositionality

Linear negation

1 For vector space A, its dual space: linear maps f : A→ R

We can denote this by A∗ = A ⊸ R.

2 Generalize to A⊥d := A ⊸ R
d , the linear negation of A.

We will often leave out the d .
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Compositionality

Consider a simple case: the composition of two functions:
G := let z = f x in g z which computes g(f (x)).

We have the chain rule: (g ◦ f )′ = (g ′ ◦ f ) · g ′, which is not directly compositional.
We want some transformation D such that D(g ◦ f ) = D(g) ◦D(f ) and we can retrieve f ′

from D(f ).
We can use the linear negation to define such a transformation, Dr, where x ∈ R and x∗ ∈ R⊥:

Dr f : R× R⊥ → R× R⊥

Dr f (x , x
∗) := (f (x), λa.x∗(f ′(x) · a))

Clearly, we can retrieve f ′: (π2 Dr f (x , Id))1 = f ′(x).
But it’s also compositional in the way we require.
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Compositionality

Compositionality of Dr

Dr f (x , x
∗) := (f (x), λa.x∗(f ′(x) · a))

Expanding definition of Dr f

Dr g(Dr f (x , x
∗)) = Dr g(f (x), λa.x

∗(f ′(x) · a))

= (g(f (x)), λb.(λa.x∗(f ′(x) · a))(g ′(f (x)) · b))
= (g(f (x)), λb.x∗(f ′(x) · (g ′(f (x)) · b))
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Compositionality of Dr
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Chain rule and contracting the composition of g and f .
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Compositionality

Compositionality of Dr
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∗) := (f (x), λa.x∗(f ′(x) · a))

Definition of Dr
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Compositionality

Generalizing Dr

Dr f (x , x
∗) := (f (x), λa.x∗(f ′(x) · a))

We can generalize this one-dimensional transformation to maps f : Rn → R, where x ∈ Rn and
x∗ = (x∗1 . . . x∗n ) ∈ (R⊥)n:

←−
D(f )(x, x∗) =

(
f (x), λa.

n∑
i=1

x∗i (∂i f (x) · a)

)
Now we want to go one step further, and define a compositional program transformation that
does the same.
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Linear substitution algebra

Linear substitution algebra

Based on simply typed λ-calculus, but with the addition of linear negation.
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Linear substitution algebra

Linear substitution algebra: types and grammar

A,B,C ::= R | A× B | A→ B | R⊥d (types)

v ::= x (!)A | r | λx (!)A.t | ⟨v1, v2⟩ (values)

t, u ::= v | tu | ⟨t, u⟩ | t[
〈
x !A, y !B

〉
:= u]

| t[x (!)A := u] | t + u | f (t1, . . . , tk) (terms)

R⊥d is the type representing the linear negation of R for some d ∈ N.
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Linear substitution algebra

Linear substitution algebra: types and grammar

A,B,C ::= R | A× B | A→ B | R⊥d (types)

v ::= x (!)A | r | λx (!)A.t | ⟨v1, v2⟩ (values)

t, u ::= v | tu | ⟨t, u⟩ | t[
〈
x !A, y !B

〉
:= u]

| t[x (!)A := u] | t + u | f (t1, . . . , tk) (terms)

x (!)A ranges over annotated variables, either exponential variables of any type A: x !A, or linear
variables specifically of type R: xR .
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Linear substitution algebra

Linear substitution algebra: types and grammar

A,B,C ::= R | A× B | A→ B | R⊥d (types)

v ::= x (!)A | r | λx (!)A.t | ⟨v1, v2⟩ (values)

t, u ::= v | tu | ⟨t, u⟩ | t[
〈
x !A, y !B

〉
:= u]

| t[x (!)A := u] | t + u | f (t1, . . . , tk) (terms)

These denote substitution, more familiar in the form let x = u in t, and its binary variant.



Introduction Automatic Differentiation Compositional backpropagation Examples

Linear substitution algebra

Linear substitution algebra: types and grammar

A,B,C ::= R | A× B | A→ B | R⊥d (types)

v ::= x (!)A | r | λx (!)A.t | ⟨v1, v2⟩ (values)

t, u ::= v | tu | ⟨t, u⟩ | t[
〈
x !A, y !B

〉
:= u]

| t[x (!)A := u] | t + u | f (t1, . . . , tk) (terms)

f ranges over the function symbols F , including at least multiplication t1 · t2
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Linear substitution algebra

Linear substitution algebra: Typing rules

Will not go over all typing rules. Two types of sequents: Γ ⊢ t : A and Γ ⊢z t : Rd
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Linear substitution algebra

Linear substitution algebra: Typing rules

Two types of sequents: Γ ⊢ t : A and Γ ⊢z t : Rd

Γ ⊢z t : Rd

Γ ⊢ λzR .t : R⊥d Γ ⊢zz : R

Γ ⊢(z)t : R Γ ⊢ u : R

Γ ⊢(z)t · u : R

z in Γ ⊢z t : Rd is a linear type annotated variable which occurs free linearly in t.
Some rules exist for both sequents.
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Linear substitution algebra

Linear substitution algebra: Typing rules

Two types of sequents: Γ ⊢ t : A and Γ ⊢z t : Rd

Γ ⊢z t : Rd

Γ ⊢ λzR .t : R⊥d Γ ⊢z z : R

Γ ⊢(z) t : R Γ ⊢ u : R

Γ ⊢(z) t · u : R

This is the typing rule for the linear negation. Linear variable z must occur linearly in t, then
the lambda that binds z is a linear map.
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Linear substitution algebra

Linear substitution algebra: Typing rules

Two types of sequents: Γ ⊢ t : A and Γ ⊢z t : Rd

Γ ⊢z t : Rd

Γ ⊢ λzR .t : R⊥d Γ ⊢z z : R

Γ ⊢(z) t : R Γ ⊢ u : R

Γ ⊢(z) t · u : R

These are some of the rules that showcase what it means for z to occur linearly.
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Linear substitution algebra

The program transformation
←−
Dd
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Example

sin(x · x) −→ let z = x*x in sin z

←−
D(sin(z !R)[z !R := x · x ])

=
←−
D(sin(z !R))[z !R×R⊥

:=
←−
D(x · x)]

= ⟨sin(t), λaR .t∗(cos(t) · a)⟩[⟨t !R , t∗!R
⊥
⟩ := z !R×R⊥

][z !R×R⊥
:=
←−
D(x · x)]

= ⟨sin(t), λaR .t∗(cos(t) · a)⟩[⟨t !R , t∗!R
⊥
⟩ := z !R×R⊥

]

[z !R×R⊥
:= ⟨s · s, λbR .s∗((s + s) · b)⟩[⟨s !R , s∗!R

⊥
⟩ := x !R×R⊥

]]
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⊥
⟩ := z !R×R⊥
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We can extract the derivative as before, yielding:

(π2
←−
D(sin(z !R)[z !R := x · x ])(i , Id))1 = (i + i) · cos(i · i) =

(
d

dx
sin(x · x)

)
(i)
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The End
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