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Introduction

I We will be dealing with a particular kind of string-to-string functions, called
regular transductions.

I These can be considered a generalization of regular languages.
I Instead of accepting or rejecting a string w ∈ Σ∗, for each string we produce an

output string.
I This output can be in Σ∗ or in some other Γ∗.
I Regular languages also have many different formalisms (regular expressions,

automatons, etc)
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Regular Transductions

I There are many ways to define functions over strings, say for example
homomorphisms, for which:

f (w · v) = f (w) · f (v)

I This is very limiting.
I In fact, a homomorphism h is uniquely defined by its application over the letters

of Σ.
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Regular Transductions

I Homomorphisms can only change the letters in each word.
I Regular transductions can do significantly more
I Examples include for, say w ∈ {a, b, c}∗,

w 7→ rev(w)

w 7→ ww
w 7→ (longest c-free prefix in w) · (longest c-free suffix in w)

I We will be looking at several models.
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Papers

I Mikołaj Bojańczyk and Lê Thành Dũng Nguyễn. Algebraic Recognition of Regular
Functions, 2023.

I Rajeev Alur and Pavol Černý. Expressiveness of streaming string transducers,
2010.
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SST

I A streaming string transducer (SST) is a model which uses several variables (or
registers) to define a function.

I It processes the input string from left-to-right (streaming).
I Each letter updates the registers.
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SST

I Say Σ = {a, b}, the input is aaab, registers R = {x}.
I What does l 7→ x = xl do?

aaab x = ε

aab x = a
ab x = aa
b x = aaa

x = aaab
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SST

I Instead of l 7→ x = xl , what about l 7→ x = lx?

aaab x = ε

aab x = a
ab x = aa
b x = aaa

x = baaa
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SST

I A finite set of states Q with initial state q0 ∈ Q.
I A finite set of variables X .
I State and variable transition functions:

δ1 : Q × Σ → Q
δ2 : Q × X × Σ → (X + Γ)∗

I A partial output function F : Q → (X + Γ)∗.

I F and δ2 must be copyless.
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SST
I For the semantics we use some (q, s) where

s : X → Γ∗

We can easily extend this to s : (X + Γ)∗ → Γ∗.
I For the initial configuration this sends all registers to ε.

(q0, s0)

I The transition function is defined by

δ(q, s)(a) = (δ1(q, a), s ′)
s ′(x) = s(δ2(q, a, x))

I Now for some word w we apply this transition function and take the output:

(q, s) = δ∗((q0, s0),w)

s(F (q))
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SST Examples

I An example we use throughout is

f (w) = w · rev(w)

I Q = {q0} and X = {x , y}.
I The update functions are

δ1(q0, l) = q0

δ2(q0, x , l) = xl
δ2(q0, y , l) = ly

I Output function is q0 7→ xy .
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Monadic Second Order Logic

I As input in this model we transform a word into an edge-labeled graph
I The output graph will then be defined using MSO formulas over this input graph.
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MSO

I Monadic Second order logic is an extension of first order logic where we can
quantify over unary (monadic) relations.

∀P∀x(Px ∨ ¬Px)
I For our purposes this means we can quantify over both nodes and sets of nodes in

the graph.

I In MSO we have:
I Atomic formulas x ∈ X , x = y , a(x , y)
I Boolean connectives such as ∨,∧,¬,→.
I Quantifiers ∃,∀ for nodes x , y and sets of nodes X ,Y .
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Example MSO Formulas

Examples of MSO formulas for a graph with edge labels Σ:
I There is an edge between x and y with label a

q(x , y) = a(x , y)

I There exists an outgoing edge with label a for this vertex:

q(x) = ∃y .a(x , y)
I There exists an outgoing edge with any label for this vertex:

q(x) = ∃y .
∨
a∈Σ

a(x , y)
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MSO Model

Definition
For some finite copy set C , we define vertex and edge formulas. That is,
I vc is in the output graph if φc(v) is true
I There is an edge vc a7−→ ud if φc d

a (v , u) is true.
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MSO Examples

Say we want to define f (w) = rev(w). We only need a copy set with one element to
do this C = {1}.
I We want to keep all the vertices, so φ1(x) = >.
I All edges should be reversed, so φ1 1

a (x , y) = a(y , x) for all a ∈ Σ.
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MSO Examples

In the case of f (w) = w · rev(w) we will need more vertices, so C = {1, 2}.
I In the first copy set we keep all vertices except the last one, in the second one we

keep everything. That is,

φ1(x) = ¬

(∨
a∈Σ

∃y .a(x , y)
)

φ2(x) = >

For convenience we will re-use φ1 as out. We can also define in accordingly.
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MSO Examples

For the edge formulas we do something similar.

I In (1, 1) we keep all edges except the last one, which has no outgoing edge:

φ1 1
a (x , y) = a(x , y) ∧ out(y)

I In (2, 2) we reverse all the edges:

φ2 2
a (x , y) = a(y , x)

I And in (1, 2) we connect the last vertex we kept from set 1 to the last vertex from
set 2. This is the edge we discarded.

φ1,2
a (x , y) = a(x , y) ∧ ¬out(y)

I φ2,1
a = ⊥.
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MSO Equivalence

I We want to create a MSO model from an SST model.
I We do this by representing the update function δ2 in several nodes.
I This is best shown by example.
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MSO Equivalence

I Let us take the model f (w) = w · rev(w), with input aba. For some letter
l ∈ Sigma this has the following register updates:

X = Xl
Y = lY

I We will represent each right-hand side of a register update by several nodes.
I Letters will be represented by two nodes without edges, while letters will have an

edge between them.
I We then need to connect these nodes, following the path that each variable took.
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Transducer Semigroup

I First, recall the definition of a semigroup:
I Some set M of elements.
I An associative operation · : M × M → M:

a · (b · c) = (a · b) · c

I To map between two semigroups we use a homomorphism:

f : M → N
f (a ·M b) = f (a) ·N f (b)
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Functor

I A homomorphism f is between two specific semigroups.
I For our purposes we need a new construction which works for every semigroup.
I We will use a semigroup functor.
I This is a mapping from semigroups to semigroups, and homomorphisms to

homomorphisms.
I Say f is a homomorphism, and F a semigroup functor:

f : X → Y
F (f ) : FX → FY
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Functor

Examples of semigroup functors include:
I Mapping a semigroup M to a tuple of M × M, with:

(l1, r1) ·M×M (l2, r2) = (l1 ·M l2, r1 ·M r2)

I Mapping M to lists of elements M∗.
I Mapping a semigroup to its opposite semigroup, which we will denote M−1.

a ·M−1 b = b ·M a
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Transducer Semigroup

Definition
A transducer semigroup onsists of the following:
I A semigroup-to-semigroup functor F
I An output mechanism outA : FA → A. This is a collection of functions such that

the following diagram commutes for any homomorphism h:

FA FB

A B

Fh

outA outB

h

This is a natural transformation.
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Transducer Semigroup

Definition
A function f : A → B between semigroups is recognized by a transducer semigroup
(F , out) if it can be decomposed as

A FB Bh outB

For some semigroup homomorphism h.

We will exclusively deal with the case where:
I The function is string-to-string
I The functor is finiteness-preserving
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Transducer Semigroup Examples

To define f (w) = w · rev(w) let us first define

double(w) = ww
rev(w)

in terms of transducer semigroups.
We will combine these into the proper transducer semigroup.
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Transducer Semigroup Example 1

For double(w) we define it as follows:
I The tuple functor,

FX = X × X
F (f ) : X × X → Y × Y
F (f )(x , x) = (f (x), f (x))

With operation mentioned previously:

(l1, r1) ·M×M (l2, r2) = (l1 ·M l2, r1 ·M r2)

I Homomorphism h : Σ∗ → Σ∗ × Σ∗ as h(w) = (w ,w).
I Output function outX (w ,w) = w · w which concatenates the words.
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Transducer Semigroup Double

aaabb h7−→ (aaabb, aaabb)
outΣ∗7−−−→ aaabbaaabb
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Transducer Semigroup Example 1

To show this is a valid transducer semigroup we need to show the following things:
I F is a valid semigroup functor.
I h(w) = (w ,w) is a homomorphism from Σ∗ to FΣ∗:

h(w · r) = (wr ,wr) = (w ,w) · (r , r) = h(w) · h(r)

I The output mechanism is natural.
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Transducer Semigroup Example 1

Now we define rev(w) as follows:
I Functor F maps a semigroup Σ∗ to its opposite semigroup, (Σ∗)−1.

I Homomorphism h:

h(l1 · l2 · · · · · ln) = l1 ·−1 l2 ·−1 · · · · −1 · ln
= ln · · · l2l1

This is actually just rev(w)!
I Output mechanism outΣ∗(w) = w .
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Transducer Semigroup Double

aaabb h7−→ a ·−1 a ·−1 a ·−1 b ·−1 b
= bbaaa
outΣ∗7−−−→ bbaaa
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Transducer Semigroup Example 1

We can combine these into the function f (w) = w · rev(w):
I Functor F (M) = M × M−1.
I Homomorphism f (w) = (w , rev(w))

I Output mechanism outM((w , r)) = w · r .

M M × M M × M−1 Mdouble id×rev outM
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Transducer Semigroup Equivalence

I Say we have a transducer semigroup (F , out, h).
I Proving the exact equivalence is quite difficult.
I Our goal:

update : Σ∗ → U∗

δ : R × U → R

I We will define what these updates U and registers R are in the process.
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Transducer Semigroup Equivalence

Our plan:
1. Track what happens to each input letter in the output (origin information).
2. Turn this output with origin information into a list of updates.
3. Define what the register and transition functions look like.
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Semigroup Coproduct

Definition
A coproduct of two semigroups A,B, denoted A ⊕ B is the following semigroup:
I Elements are disjoint union of elements in A and B, limited to ones where they

are alternating;

ab · aa · bba
I Operation is defined in the obvious way:

(ab · aa · bba) · (a · b) = ab · aa · bbaa · b
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Semigroup Coproduct

I We use this to separate each input letter into its own semigroup.
I Say f (w) = w · rev(w), with input aab

aab 7→ (a, a, b) : (Σ∗)3

h7−→ (h(a), h(a), h(b)) : (Σ∗ × Σ∗)3

= ((a, a), (a, a), (b, b)) : (Σ∗ × Σ∗)3

7→ ((a, a), (a, a), (b, b)) : ((Σ∗
1 ⊕ Σ∗

2 ⊕ Σ∗
3)× (Σ∗

1 ⊕ Σ∗
2 ⊕ Σ∗

3))
3

·7−→ (a · a · b, b · a · a) : ((Σ∗
1 ⊕ Σ∗

2 ⊕ Σ∗
3)× (Σ∗

1 ⊕ Σ∗
2 ⊕ Σ∗

3))
3

out7−−→ a · a · bb · a · a : (Σ∗
1 ⊕ Σ∗

2 ⊕ Σ∗
3)
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Status

I We have a way to keep track of letter origins.
I To define the updates from this we will need several operations.
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Merge

I Say we have a coproduct A1 ⊕ · · ·An
I With some I ⊆ {1, · · · n} coordinates having the same semigroup A.
I We can then merge these coordinates:

ab · aa · bb · bab 7→ abaa · bb · bab
I This operation is of type

A1 ⊕ · · · ⊕ An → A ⊕
⊕
k /∈I

Ak
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Shape

I We map each coordinate to the semigroup 1.
I We denote such a mapping as ! : A → 1.

ab · aa · bb · bab 7→ 1 · 1 · 1 · 1
I This operation is of type

A1 ⊕ · · · ⊕ An → 1 ⊕ · · · ⊕ 1
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View

I Pick a coordinate i .
I Apply ! and merge all other coordinates.

ab · aa · bb · bab 7→ 1 · aa · 1
I We took the view of the blue coordinate.
I For Ai this is type

A1 ⊕ · · · ⊕ An → 1 ⊕ Ai
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Reconstruction

I A coproduct can be reconstructed using its views and shape.

ab 1 bab
1 aa 1

1 bb 1
1 1 1 1

7→ ab · aa · bb · bab
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Transducer Semigroup Equivalence
I To create the updates we merge all coordinates before and after each i into

different 1 semigroups.
I Say that for some transducer semigroup

a · a · b 7→ ab · aa · bb · bab

I Then we get the following:

ab · aa · bb · bab 7→
ab 1n bab
1p aa 1n 1p

1p bb 1p

I Updates are in 1 ⊕ A ⊕ 1.
I The register will be in 1 ⊕ A.
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Transducer Semigroup Equivalence

1
ab 1n bab
1p aa 1n 1p

1p bb 1p

7→

ab 1 bab 1p aa 1n 1p
1p bb 1p

7→
ab aa 1 bab 1p bb 1p

7→
ab aa bb bab
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Transducer Semigroup Equivalence

I From a semigroup transducer, we now have the functions we wanted:

update : Σ∗ → (1 ⊕ A ⊕ 1)∗

δ : (1 ⊕ A)× (1 ⊕ A ⊕ 1) → (1 ⊕ A)

I We have succesfully transformed a transducer semigroup into something
approximating an SST.

44 / 45



Recap

I Regular transductions are a class of string-to-string functions.
I There are many equivalent models available.
I We have covered SST, MSO, and transducer semigroups.

I Questions?
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