MFoCS Seminar: Regular Transductions

Daan Spijkers

Jan 2025

1/45



Introduction

» We will be dealing with a particular kind of string-to-string functions, called
regular transductions.

» These can be considered a generalization of regular languages.

> Instead of accepting or rejecting a string w € L, for each string we produce an
output string.

» This output can be in ¥* or in some other I'*.

» Regular languages also have many different formalisms (regular expressions,
automatons, etc)

2/45



Regular Transductions

» There are many ways to define functions over strings, say for example
homomorphisms, for which:

f(w-v)="f(w)-f(v)

» This is very limiting.

» In fact, a homomorphism h is uniquely defined by its application over the letters
of X.

3/45



Regular Transductions

» Homomorphisms can only change the letters in each word.
» Regular transductions can do significantly more

» Examples include for, say w € {a, b, c}*,

w — rev(w)
W= ww

w — (longest c-free prefix in w) - (longest c-free suffix in w)

> We will be looking at several models.

4/45



Papers

» Mikotaj Bojahczyk and L& Thanh Diing Nguyé&n. Algebraic Recognition of Regular
Functions, 2023.

5/45



Papers

» Mikotaj Bojahczyk and L& Thanh Diing Nguyé&n. Algebraic Recognition of Regular
Functions, 2023.

» Rajeev Alur and Pavol Cerny. Expressiveness of streaming string transducers,
2010.

5/45



SST

» A streaming string transducer (SST) is a model which uses several variables (or
registers) to define a function.

» It processes the input string from left-to-right (streaming).
» Each letter updates the registers.

6/45



SST

» Say X = {a, b}, the input is aaab, registers R = {x}.

» What does / — x = x/ do?

aaab
aab
ab

b

X X X X X
Il
L
o

7/45



SST

» Instead of / — x = x/, what about / — x = Ix?

8/45



SST

» Instead of / — x = x/, what about / — x = Ix?

aaab X =€
aab X=a
ab X = aa
b X = aaa

x = baaa

8/45



SST

> A finite set of states Q with initial state g € Q.
> A finite set of variables X.

» State and variable transition functions:

:QxX—Q
H:QxXXXE—=(X+0)

» A partial output function F: Q — (X +T)*.

9/45



SST

A\

A finite set of states @ with initial state qg € Q.
A finite set of variables X.

A\

» State and variable transition functions:

:QxX—Q
H:QxXXXE—=(X+0)

A\

A partial output function F: Q — (X +I')*.
F and d> must be copyless.

A\

9/45



SST

» For the semantics we use some (g, s) where
s: X =T

We can easily extend this to s : (X +T)* — ™.
» For the initial configuration this sends all registers to e.

(90, s0)

10/45



SST

» For the semantics we use some (g, s) where
s: X =T

We can easily extend this to s : (X +T)* — ™.

» For the initial configuration this sends all registers to e.

(90, s0)

» The transition function is defined by

9(g,5)(a) = (61(q, ), )
s'(x) = s(02(q, a, x))

10/45



SST

» For the semantics we use some (g, s) where
s: X =T

We can easily extend this to s : (X +T)* — ™.
» For the initial configuration this sends all registers to e.

(90, s0)

» The transition function is defined by

d(q,s)(a) = (d1(q, a),s")
SI(X) = 5(52(q7 a7X))

» Now for some word w we apply this transition function and take the output:
(q7 5) = 5*((q07 SO)a W)
s(F(q))

10/45



SST Examples

> An example we use throughout is

f(w) =w- rev(w)

> Q@ ={qo} and X = {x, y}.
» The update functions are

61(q07 I) = qo
92(qo, x, 1) = xI
02(qo, y,1) = ly

» Qutput function is qg — xy.

11/45



Monadic Second Order Logic

P> As input in this model we transform a word into an edge-labeled graph

» The output graph will then be defined using MSO formulas over this input graph.

12/45



MSO

» Monadic Second order logic is an extension of first order logic where we can
quantify over unary (monadic) relations.

VPVx(Px V —Px)

» For our purposes this means we can quantify over both nodes and sets of nodes in
the graph.

13/45



MSO

» Monadic Second order logic is an extension of first order logic where we can
quantify over unary (monadic) relations.

VPVx(Px V —Px)

» For our purposes this means we can quantify over both nodes and sets of nodes in
the graph.
» In MSO we have:

> Atomic formulas x € X, x =y, a(x,y)
» Boolean connectives such as V, A, -, —.
» Quantifiers 3,V for nodes x, y and sets of nodes X, Y.

13/45



Example MSO Formulas

Examples of MSO formulas for a graph with edge labels X:

» There is an edge between x and y with label a

q(x,y) = a(x,y)

14/45



Example MSO Formulas

Examples of MSO formulas for a graph with edge labels X:

» There is an edge between x and y with label a

q(x,y) = a(x,y)

P> There exists an outgoing edge with label a for this vertex:

q(x) = Jy.a(x,y)

14/45



Example MSO Formulas

Examples of MSO formulas for a graph with edge labels X:

» There is an edge between x and y with label a
q(x,y) = a(x,y)

P> There exists an outgoing edge with label a for this vertex:

q(x) = Jy.a(x,y)

» There exists an outgoing edge with any label for this vertex:

q(x) =3y. \/ a(x,y)

acx

14/45



MSO Model

Definition
For some finite copy set C, we define vertex and edge formulas. That is,
» v is in the output graph if ¢°(v) is true

> There is an edge v¢ & u? if ¢S 9(v, u) is true.

15/45



MSO Examples

Say we want to define f(w) = rev(w). We only need a copy set with one element to
do this C = {1}.
> We want to keep all the vertices, so ¢!(x) = T.

> All edges should be reversed, so ¢ 1(x,y) = a(y,x) forall a € .

16/45



MSO Examples

In the case of f(w) = w - rev(w) we will need more vertices, so C = {1,2}.

» In the first copy set we keep all vertices except the last one, in the second one we
keep everything. That is,

¢ (x) = - <\/ Hy-a(x,y)>
acy
P*(x)=T

For convenience we will re-use ¢! as out. We can also define in accordingly.

17/45



MSO Examples

For the edge formulas we do something similar.

18/45



MSO Examples

For the edge formulas we do something similar.

» In (1,1) we keep all edges except the last one, which has no outgoing edge:

Li(x,y) = a(x,y) A out(y)

18/45



MSO Examples

For the edge formulas we do something similar.

» In (1,1) we keep all edges except the last one, which has no outgoing edge:
3 1, y) = alx,y) A out(y)

» In (2,2) we reverse all the edges:

03 2(x,y) = a(y, x)

18/45



MSO Examples

For the edge formulas we do something similar.

» In (1,1) we keep all edges except the last one, which has no outgoing edge:

Li(x,y) = a(x,y) A out(y)

» In (2,2) we reverse all the edges:

03 2(x,y) = a(y, x)

» And in (1,2) we connect the last vertex we kept from set 1 to the last vertex from
set 2. This is the edge we discarded.

Y2(x,y) = a(x,y) A —out(y)

18/45



MSO Examples

For the edge formulas we do something similar.

» In (1,1) we keep all edges except the last one, which has no outgoing edge:

Li(x,y) = a(x,y) A out(y)

» In (2,2) we reverse all the edges:

3 2(x.y) = aly, x)
» And in (1,2) we connect the last vertex we kept from set 1 to the last vertex from

set 2. This is the edge we discarded.

Y2(x,y) = a(x,y) A —out(y)

> o3t =L

18/45



MSO Equivalence

> We want to create a MSO model from an SST model.
> We do this by representing the update function J» in several nodes.

» This is best shown by example.

19/45



MSO Equivalence

» Let us take the model f(w) = w - rev(w), with input aba. For some letter
I € Sigma this has the following register updates:

X=Xl
Y=IY

» We will represent each right-hand side of a register update by several nodes.

> Letters will be represented by two nodes without edges, while letters will have an
edge between them.

» We then need to connect these nodes, following the path that each variable took.

20/45



Transducer Semigroup

» First, recall the definition of a semigroup:

» Some set M of elements.
» An associative operation - : M x M — M:

a-(b-c)=(a-b)-c

> To map between two semigroups we use a homomorphism:

f-M—N
f(a-mb)="f(a)-nf(b)

21/45



Functor

A homomorphism f is between two specific semigroups.
For our purposes we need a new construction which works for every semigroup.
We will use a semigroup functor.

This is a mapping from semigroups to semigroups, and homomorphisms to
homomorphisms.

» Say f is a homomorphism, and F a semigroup functor:

fiX—Y
F(f): FX = FY

22/45



Functor

Examples of semigroup functors include:
» Mapping a semigroup M to a tuple of M x M, with:

(h,r) -msm (hyr2) =(h -mb,n-mr)

» Mapping M to lists of elements M*.

» Mapping a semigroup to its opposite semigroup, which we will denote M~1.

a-Mflb:b-Ma

23/45



Transducer Semigroup

Definition
A transducer semigroup onsists of the following:
» A semigroup-to-semigroup functor F

» An output mechanism outa : FA — A. This is a collection of functions such that
the following diagram commutes for any homomorphism h:

FA - FB
loutA loutg
A—" B

24 /45



Transducer Semigroup

Definition
A transducer semigroup onsists of the following:
» A semigroup-to-semigroup functor F

» An output mechanism outa : FA — A. This is a collection of functions such that
the following diagram commutes for any homomorphism h:

FA - FB
loutA loutg
A—" B

This is a natural transformation.

24 /45



Transducer Semigroup

Definition
A function f : A — B between semigroups is recognized by a transducer semigroup
(F,out) if it can be decomposed as

outg
>

A—" . FB B

For some semigroup homomorphism h.

25 /45



Transducer Semigroup

Definition
A function f : A — B between semigroups is recognized by a transducer semigroup
(F,out) if it can be decomposed as

A—r, g e, B

For some semigroup homomorphism h.
We will exclusively deal with the case where:
» The function is string-to-string

» The functor is finiteness-preserving

25 /45



Transducer Semigroup Examples

To define f(w) = w - rev(w) let us first define

double(w) = ww

rev(w)

in terms of transducer semigroups.
We will combine these into the proper transducer semigroup.

26 /45



Transducer Semigroup Example 1

For double(w) we define it as follows:

» The tuple functor,

FX=XxX
F(f): XxX—=>YxY
F(f)(x,x) = (f(x), f(x))

With operation mentioned previously:

(h,r) -mxm (hyr2) =(h -mb,n-mr)

» Homomorphism h: X* — ¥* x ¥* as h(w) = (w, w).

» Output function outx(w,w) = w - w which concatenates the words.

27 /45



Transducer Semigroup Double

aaabb (aaabb, aaabb)

outsx
—2=3 aaabbaaabb

28 /45



Transducer Semigroup Example 1

To show this is a valid transducer semigroup we need to show the following things:
» F is a valid semigroup functor.

» h(w) = (w,w) is a homomorphism from * to FX*:
h(W-I’):(WI’7WI’):(W,W)-(I’,I’):h(W)-h(I’)

» The output mechanism is natural.

29 /45



Transducer Semigroup Example 1

Now we define rev(w) as follows:

» Functor F maps a semigroup ¥* to its opposite semigroup, (X*)71.

30/45



Transducer Semigroup Example 1

Now we define rev(w) as follows:
» Functor F maps a semigroup ¥* to its opposite semigroup, (X*)71.

» Homomorphism h:

Wl b ly)=h by =11,
=lp---hh

This is actually just rev(w)!

» Output mechanism outs+(w) = w.

30/45



Transducer Semigroup Double

aaabbrﬁ}a~_1a-_1a-_1b-_1b
= bbaaa

outsy*
—=3 bbaaa

31/45



Transducer Semigroup Example 1

We can combine these into the function f(w) = w - rev(w):
» Functor F(M) =M x M~1,
» Homomorphism f(w) = (w, rev(w))

» Output mechanism outy((w,r)) = w-r.

M doub/g M x M fdxrey idx rey M x Mfl outpy M

32/45



Transducer Semigroup Equivalence

» Say we have a transducer semigroup (F, out, h).
» Proving the exact equivalence is quite difficult.

» Our goal:

update : ¥* — U*
0:RxU—R

> We will define what these updates U and registers R are in the process.

33/45



Transducer Semigroup Equivalence

Our plan:
1. Track what happens to each input letter in the output (origin information).
2. Turn this output with origin information into a list of updates.

3. Define what the register and transition functions look like.

34/45



Semigroup Coproduct

Definition
A coproduct of two semigroups A, B, denoted A @ B is the following semigroup:

» Elements are disjoint union of elements in A and B, limited to ones where they
are alternating;

ab - aa- bba

» Operation is defined in the obvious way:

(ab-aa-bba)-(a-b)=ab-aa-bbaa-b

35/45



Semigroup Coproduct

P> We use this to separate each input letter into its own semigroup.

» Say f(w) = w - rev(w), with input aab

aab — (a,a, b)

% (h(a), h(a), h(b))

::((373)7(3’3)7(b7b))
— ((a,a),(a, a), (b, b))
> (a-a-b,b-a-a)

out
——>a-a-bb-a-a

H(Z)?
(X x X)3
(X x )3

H((TeT o)) x (5 o X6 13))°
H((TeD o)) x (N e X o)’

(X1 Xie X3

36/45



Status

> We have a way to keep track of letter origins.

» To define the updates from this we will need several operations.

37/45



Merge

» Say we have a coproduct A; @ --- A,
» With some / C {1,--- n} coordinates having the same semigroup A.

» We can then merge these coordinates:

ab - aa- bb - bab+— abaa - bb - bab

» This operation is of type

A @A, — Ad P A
kel

38/45



Shape

» \We map each coordinate to the semigroup 1.

» We denote such a mapping as ! : A — 1.

ab-aa-bb-bab+—1-1-1-1

» This operation is of type

,ql PP /qn —1¢.---d1

39/45



View

P> Pick a coordinate i.
» Apply ! and merge all other coordinates.
ab-aa-bb-bab+—1-2a-1

» We took the view of the blue coordinate.

> For A; this is type
AlD--- DA, = 1D A

40/ 45



Reconstruction

» A coproduct can be reconstructed using its views and shape.

ab 1 bab
1 aa 1
1 bb 1
1 1 1 1

— ab-aa- bb- bab

41/45



Transducer Semigroup Equivalence

> To create the updates we merge all coordinates before and after each i into
different 1 semigroups.

» Say that for some transducer semigroup
a-a-bwab-aa-bb- bab
> Then we get the following:
ab 1, bab
ab-aa-bb-bab— 1, aa 1, 1,
1, bb 1,

> Updatesarein 1 AP 1.
» The register will be in 1§ A.

42/45



Transducer Semigroup Equivalence

43/45



Transducer Semigroup Equivalence

1 1, aa 1, 1,
1, bb 1,

—
ab 1 bab Ip 22 1o 1

43/45



Transducer Semigroup Equivalence

ab 1,

1 1, aa 1,

1, bb
—

1, aa 1,

ab 1 bab 1, bb
%

ab aa 1 bab 1, bb 1,

43/45



Transducer Semigroup Equivalence

1 1, aa 1, 1,
1, bb 1,
—
1, aa 1, 1
ab 1 bab plp bg 1i
S
ab aa 1 bab 1, bb 1,
—

ab aa bb bab

43/45



Transducer Semigroup Equivalence

» From a semigroup transducer, we now have the functions we wanted:

update : X" - (1o A 1)*
(1A x(1aoAdl)— (1 A)

> We have succesfully transformed a transducer semigroup into something
approximating an SST.

44 /45



Recap

» Regular transductions are a class of string-to-string functions.
» There are many equivalent models available.

» We have covered SST, MSO, and transducer semigroups.

45 /45



Recap

» Regular transductions are a class of string-to-string functions.
» There are many equivalent models available.

» We have covered SST, MSO, and transducer semigroups.

» Questions?

45 /45



	Regular Transductions
	Streaming String Transducer
	MSO
	Transducer Semigroup

