
Proving PureCake (and cakeml)

Erik Oosting

Proving PureCake
(and CakeML)

1

| 2

Papers
Introduction

● The Verified CakeML Compiler Backend
○ (https://doi.org/10.1017/S0956796818000229)

● PureCake: A verified compiler for a lazy functional language
○ (https://doi.org/10.1145/3591259)

https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1145/3591259

Outline
● Introduction
● CakeML (Compilation)
● PureCake Evaluation
● PureCake Compilation

Introduction

| 3

● Formally verified compiler for a dialect of Standard ML
● Takes resource constraints into account for it’s proof of correct compilation
● Implemented in HOL4

○ Theorems and proofs as data
○ Simply typed

About CakeML
Introduction

| 4

| 5

About PureCake
Introduction

● Lazily evaluated
● A bit more complicated

| 6

About this presentation
Introduction

● These papers are about a lot of stuff
○ CakeML and PureCake are big projects
○ A lot of compiler techniques are used to get to where

we are
● I like reading about compilers a lot…

| 7

How to make a compiler
● Figure out what your starting (source) language does

○ What makes a program in the starting language correct?
○ What outside behaviours does it have?

● Figure out what your target language does
○ What does it do different from the source language?
○ How are you going to wrangle the behaviour of the source language into the target

language?
● Recommended: make more compilers

○ Define Intermediate Languages
○ Put the compilers for all your intermediate languages together

Introduction

● Make sure all programs “behave as expected”
○ No memory leaks
○ “Semantics” between source and target stay the same

How to prove a compiler
Introduction

| 8

Context: CakeML

9

● Approachable to newcomers
○ Easily extensible
○ Usable for future research/student projects

● Keep the computer in mind
○ Computers don’t have infinite memory. We can run out!

● Juusst the right number of intermediate languages
○ Too many and we have a lot of unnecessary work
○ Too little and the compilation steps become too convoluted to prove

CakeML Design Goals
Context: CakeML

| 10

I/O effects
Context: CakeML

| 11

The CakeML
compilation pipeline

12

We need a correctness proof for every compilation step.
● config -> Arbitrary machine config
● “syntactic_condition” -> no errors in the program

General Compiler proofs
Compilation pipeline

| 13

The program may run out of memory:

General Compiler proofs
Compilation pipeline

| 14

● Using a Parsing Expression Grammar
○ Order sensitive
○ Non-terminals have a rank based on the input they consume
○ Ranks ensure that the parser consume input

● Type inference
○ Uses “triangular substitution”
○ No let-polymorphism

● Removing syntactic language features
○ No modules, ADTs, incomplete pattern matches,

names
● Result: A fully typed, nameless, simple

programming language

Parsing to an AST
Compilation Pipeline

| 15

● Functions -> Closures
● Used for lambda lifting
● Closures:

○ (Optional) location of the closure
○ Evaluation environment (values for free variables ‘Var’ in

the environment)
○ Arguments already passed to the closure
○ Number of arguments the closure still needs
○ The closure body

● Recursive closures
○ Same as closures, except this time a list of needed

arguments and function bodies
○ Finally, a list index indicating where to start evaluation

CLOSLang
Compilation pipeline

| 16

● No closures!
● Type checking happens here
● ‘Closure’ ->

● ‘RecClosure’ ->

The ByteVectorLangauge (BVL)
Compilation Pipeline

| 17

| 18

● Turning BVL into an imperative language
● Semi-manual GC with ‘MakeSpace’
● ‘num’s are variables
● Used for optimizations in memory

allocations

DATAlang
Compilation Pipeline

| 19

| 20

DATALang
Compilation Pipeline

● Explicit call stack
● More direct error handling

Intermezzo: CakeML
Evaluation

21

● (Sabry & Feleissen, 1992)
● Implicit in the BVL step
● ANF separates nested function calls into ‘let’ bindings TODO FIX THIS

Explaining Evaluation using ANF
Intermezzo

| 22

| 23

Explaining Evaluation using ANF
Intermezzo

● Some more practical grammars

| 24

Explaining Evaluation using ANF
Intermezzo

PureCake

25

About PureCake
Purecake!

● Looks like Haskell
● Works* like Haskell

○ Has lazy evaluation
○ And substitution semantics

● Formalizes some of the things CakeML is using
● Compiles to CakeML

| 26

| 27

About Purecake
Purecake!

PureCake: Evaluation

28

I/O Effects (Interaction trees)
Purecake evaluation

● Unlike CakeML, we want to model all possible interactions with the outside
world
○ We can use Interaction Trees (Li-yao Xia et al. 2019)

● Co-inductive datatype that can represent all kinds of semantics

| 29

| 30

Continuations
Explained questions

All programs have a past, a present and a future
● The past:

○ Variables
○ Assigned memory

● The present
○ The expression we’re currently evaluating
○ The instruction we’re currently running

● The future
○ Return pointers etc.
○ Continuations!

● Continuations are modeled as a function, with the current expression result as
input, and the program result as output

| 31

I/O Effects (Interaction trees)
Purecake evaluation

| 32

I/O Effects (Interaction trees)
Purecake evaluation

Demand analysis
Purecake evaluation

● By default, all variables are stored in
heap memory

● Goal: Make as much as possible eager
without affecting semantics

● Special case: ‘seq’
● Demand analysis says nothing about

evaluation order

| 33

| 34

Demand analysis
Purecake evaluation

| 35

Demand Analysis
Purecake Evaluation

● Things get tricky when analysing functions & function calls though
● Three cases:

○ Applied expressions need to be demanded

○ Function arguments need to be demanded when they are applied

○ The recursive case

Compiling PureCake

36

Parsing
Purecake compilation

● We have indents now, so no normal CFG
● Instead, we add an indentation indicators to our CFGs

| 37

● We can now calculate the “Indentation sets of non-terminals
○ Either a closed set of possible indentations (i to j no. of indents)
○ A lower-bounded set (i or more no. of indents)
○ Any number of indents
○ Nowhere (this would be a parsing error)

● Result is the program AST, represented as a giant letrec-statement

Type inference
Purecake compilation

● Classical Hindley-Milner algorithms give bad error messages
● We’ll use a constraint-based system instead

| 38

| 39

Type Inference
Purecake Compilation

● We now have constraints
● Constraint solving is “straight-forward” and “omitted”

| 40

Demand Analysis
Purecake Compilation

● We’ve already done this
● Result is adding ‘seq’ to expressions we know we can demand without affecting

semantics

| 41

Backend: The ILs
Purecake compilation

● Instead of proving semantics preservation with functions, we use relations
between different ILs
○ More flexible than functions
○ Means we don’t need to keep track of compiler invariants between all our functions

● We can then reconstruct a function out of the relations we’ve made

THUNKLang
Purecake compilation

● Very similar to the source language
● Eagerly evaluated
● 2 new constructs

○ delay: turns an expression into a thunk
○ force: evaluates e to a thunk, then forces

evaluation of the thunk
● Note: at this point a thunk re-evaluates

every time it is forced!

| 42

| 43

THUNKLang
Purecake compilation

| 44

THUNKLang
Purecake compilation

● Note the simplicity in compilation thanks to demand analysis
○ However, this translation introduces a lot of ‘delay(force(e))’ constructs
○ Define a relation unthunk and prove ‘mk_delay’ satisfies this relation

●

EnvLang
Purecake compilation

● We use environments, instead of substituting functions with their definitions

| 45

StateLang
Purecake compilation

● Compile ‘delay’ and ‘force’ primitives into actual expressions
○ ‘delay’ computations are stored in a mutable array
○ ‘force’ primitives are possible updates to the mutable array (if the value inside of it hasn’t

been forced yet)
● Monadic operations are also compiled into thunk-style functions

○ “Stateful operations” (Exceptions, mutable array handling, I/O etc.) are turned into
special primitives

○ Other operations are turned into computations that accept a unit input to perform the
actual operation.

| 46

| 47

StateLang
Purecake compilation

| 48

StateLang
Purecake compilation

● We mostly need to prove that our operations on thunks are correct
○ We need to prove that semantics preserve ‘EnvLang -> StateLang’ AND ‘StateLang ->

Envlang’
● A bit of cleanup:

○ Remove cases of ‘(λ().ce)()’ and replace them with ‘ce’
● Semantics themselves are implemented by a CESK machine

○ Relatively straight-forward
○ Stateful primitives are implemented by the machine

From ITrees to CakeML
Purecake compilation

● We need to show that PureCake semantics are equivalent to CakeML semantics
● A different CakeML project already implemented a CESK machine we can use
● Turn our interaction trees to CakeML semantics

○ CakeML uses “oracle semantics”
○ Remember: ITrees simulate all possible outside-world semantics
○ We need to carve out the branch from our ITree that corresponds to the CakeML

semantics

| 49

Conclusion

50

| 51

The theorems we get from
PureCake

The End!

● The compiler compiles correct PureCake into correct CakeML
○ That means that if the source code parses and type-checks, it compiles correctly

● Therefore, it compiles correct PureCake into correct machine code

Conclusion
The End!

| 52

Q and A

53

| 54

“Why no proofs”
Expected Questions

● The proofs are very big
○ CakeML supposedly takes 22 hours and 16GB of ram to compile/bootstrap from source

● The proofs are more work than ideas

| 55

“What is Co-inductivity?”
Expected questions

● Dual to inductive types
○ Are generated using co-recursive functions
○ Can be potentially infinite
○ Cannot just be consumed by an inductive function

| 56

Demand Analysis (vs Haskell)
Expected Questions

| 57

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an
uninterpretable function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can
○ Basically symbolic evaluation

● Head Normal Form: We cannot find any lambdas to fill
○ We’ve evaluated any top level function bodies
○ (We don’t really deal with HNF anymore)

● Weak Head Normal Form: We can’t do trivial substitutions anymore
○ Any partially applied function will be substituted with its definition any the arguments

that were applied
○ We don’t do anything else.

