Proving PureCake
(and CakeML)

||||||||

Introduction

Papers

e The Verified CakeML Compiler Backend
o (https://doi.org/10.1017/50956796818000229)

e PureCake: A verified compiler for a lazy functional language
o (https://doi.org/10.1145/3591259)

Radboud University 3%

s
B
Tonyes®

https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1145/3591259

Introduction

Outline

Introduction

CakeML (Compilation)
PureCake Evaluation
PureCake Compilation

Radboud University 3%}

“omyes

Introduction

About CakeML

e Formally verified compiler for a dialect of Standard ML
e Takes resource constraints into account for it's proof of correct compilation
e Implemented in HOL4

© Theorems and prOOfS as data fun fac n = if n = 0@ then 1 else fac (nh-1) * n;

o Simply typed

fun main ()
let
val arg = List.hd (CommandLine.arguments())
val n = Option.valOof (Int.fromString arg)

in
print_int (fac n) ; print "\n"
end
handle _ =>
TextIO.print_err ("usage: " A CommandLine.name() A " <n>\n");
main ();

Radboud University 3%}

“omyes

Introduction

About PureCake

e Lazily evaluated
e A bit more complicated

Radboud University §

numbers :: [Integer]

numbers =

let num n =n : num (n + 1)

in num O
factA :: Integer -> Integer -> Integer
factA a n =

if n < 2 then a
else factA (a * n) (n - 1)

factorials :: [Integer]
factorials = map (factA 1) numbers

app :: (a -> I0 b) -> [a] -> I0 ()
app f 1 = case 1 of

[T -> return ()

hit <> dof .h: ; app T &

main :: I0 ()
main = do
argl <- read_argil
-- fromString == 0 on malformed input
let 1 = fromString argil
facts = take i factorials
app (\1 -> print $ toString i) facts

SILICATE CHEMISTRY 1S SECOND
Introduction NATURE. TO US GEOCHEMISTS, SO
Ab t t h ° t t ° lT\'/SEERSY TO FORGET THAT THI-(:)'\“'Y
AVERAGE PERSON PROBABLY
ou Is presen a Ion KNOWS THE FORMULAS FOR OLIVINE

AND ONE OR TWO FELDSPARS.

h b lot of stuff l AND QUARTZ, OF COURSE.
° ese papers are about a lot of stu

o CakeML and PureCake are big projects OF COURSE

o Alot of compiler techniques are used to get to where

we are
e |like reading about compilers a lot...

EVEN WHEN THEY'RE TRYING TO
COMPENSATE. FOR IT, EXPERTS IN ANYTHING
WILDLY OVERESTIMATE THE AVERAGE
PERSON'S FAMILIARITY WITH THEIR FIELD.

Radboud University 3$? | 6
"o

Introduction

How to make a compiler

e Figure out what your starting (source) language does
o What makes a program in the starting language correct?
o What outside behaviours does it have?
e Figure out what your target language does
o What does it do different from the source language?
o How are you going to wrangle the behaviour of the source language into the target
language?
e Recommended: make more compilers
o Define Intermediate Languages
o Put the compilers for all your intermediate languages together

Radboud University 3%}

“omyes

Introduction

How to prove a compiler

e Make sure all programs “behave as expected”
o No memory leaks
o “Semantics” between source and target stay the same

Radboud University 3%

A
B
o\

Context: CakeML

Radboud University 3%

B
E
o\

Context: CakeML

CakeML Design Goals

e Approachable to newcomers
o Easily extensible
o Usable for future research/student projects
e Keep the computer in mind
o Computers don't have infinite memory. We can run out!
e Juusst the right number of intermediate languages
o Too many and we have a lot of unnecessary work
o Too little and the compilation steps become too convoluted to prove

Radboud University 3%} | 10

“omyes

Context: CakeML

1/0 effects

semantics: ¢ ffi_state — program — behaviour set

behaviour = Diverge (io_event stream) | Terminate outcome (io_event list) | Fail

outcome = Success | Resource_limit_hit | FFl_outcome final_event

Radboud University 3% | 11

s
B
Tonyes®

The CakeML
compilation pipeline

12

Compilation pipeline

General Compiler proofs

We need a correctness proof for every compilation step.

e config -> Arbitrary machine config
e “syntactic_condition” -> no errors in the program

— compile config prog = new_prog N\
syntactic_condition prog A
Fail ¢ semantics, ffi prog =
semanticsg ffi new_prog = semantics, ffi prog

Radboud University 3%

s
B
Tonyes®

[13

Compilation pipeline

General Compiler proofs

The program may run out of memory:

semanticsg ffi new_prog C extend_with_resource_limit (semantics, ffi prog)

extend_with_resource_limit behaviours =
behaviours U
{ Terminate Resource_limit_hit io_list | 3z . Terminate ¢ [€ behaviours N\ io_list <1} U
{ Terminate Resource_limit_hit io_list | 3l. Diverge Il € behaviours N\ fromList io_list < Il }

Radboud University 3%

s
B
Tonyes®

| 14

Compilation Pipeline

Parsing to an AST

Using a Parsing Expression Grammar
o Order sensitive
o Non-terminals have a rank based on the input they consume
o Ranks ensure that the parser consume input

Type inference exp =
o Uses “triangular substitution” Var num
o No let-polymorphism | If exp exp exp

Removing syntactic language features

Let (exp list) ex
o No modules, ADTs, incomplete pattern matches, | (exp) exp

No me | Raise exp
. | Handle exp exp
Result: A fully typed, nameless, simple | Tick exp

programming language | Call num (num option) (exp list)

| Op op (exp list)

Radboud University 3%} | 15

“omyes

V=
Number int

Compilation pipeline | Word64 (64 word)

CLOSLang Bytevector (8 vord List)

| RefPtr num
| Closure (num option) (v 1list) (v 1ist) num exp

Functions -> Closures | Recclosure (num option) (v 1list) (v 1list) ((num X exp)list)num

Used for lambda lifting exp =
Closures: Y —
o (Optional) location of the closure | TF 055 55
o Evaluation environment (values for free variables ‘Var' in L)
the environment) | Let (exp list) exp
o Arguments already passed to the closure | Raise exp
o Number of arguments the closure still needs | Handle exp exp
o The closure body | Tick exp
Recursive closures | Call num (num option) (exp list)
o Same as closures, except this time a list of needed | Op op (exp list)

arguments and function bodies
o Finally, a list index indicating where to start evaluation

Radboud University 3%

s

3

s
Tone®

|16

Compilation Pipeline

The ByteVectorLangauge (BVL)

v =
No closures! SULIAST A
. | Word64 (64 word)
Type checking happens here | Blol s e 1dst)
‘Closure’-> Bjock closure_tag | CodePtr num

([CodePtr ptr; Number arg_count] + free_var_vals) | RefPtr num
‘RecClosure’ -> g,k closure_tag

[CodePtr ptr; Number arg_count; RefPtr ref _ptr] exp =

Var num

| If exp exp exp

| Let (exp list) exp

| Raise exp

| Handle exp exp

| Tick exp

| Call num (num option) (exp list)
| Op op (exp list)

Radboud University 3%

s
B
Tonyes®

|17

evaluate ([|,env,s) = (Rval [],s)
evaluate (x:y::xs,env,s) =
case evaluate ([x],env,s) of
(Rvalvy,sy) =
(case evaluate (y::xs,env,s;) of
(Rval vs,s2) = (Rval (vi # vs),52)
| (Rerre,s2) = (Rerre,s2))
| (Rerr vyg,s1) = (Rerrvyg,s;)

evaluate ([Var n],env,s) =
if n < len env then (Rval [nth n env],s)
else (Rerr (Rabort Rtype_error),s)

evaluate ([Let xs x],env,s) =

case evaluate (xs,env,s) of
(Rval vs,s1) = evaluate ([x],vs # env,s;)

| (Rerre,s;) = (Rerre,s;)

evaluate ([Op op xs,env,s) =
case evaluate (xs,env,s) of
(Rvalvs,sy) =
(case do_app op (rev vs) s of
Rval (v,s2) = (Rval [v],s2)
| Rerr err = (Rerr err,sy))
| (Rerrvg,s1) = (Rerrvg,s;)

evaluate ([Raise x|,env,s) =

case evaluate ([x],env,s) of
(Rvalvs,s;) = (Rerr (Rraise (hd vs)),s1)
| (Rerre,s;) = (Rerre,s;)

Radboud University *%}

evaluate ([Handle x| x2],env,s) =
case evaluate ([x;],env,s) of
(Rvalv,s;) = (Rvalv,s;)

| (Rerr (Rraise v),s1) = evaluate ([xy],v::env,s;)
| (Rerr (Rabort e),s;) = (Rerr (Raborte),s)

evaluate ([Call ticks dest xs],env,s) =
case evaluate (xs,env,s) of
(Rvalvs,s1) =
(case find_code dest vs s1.code of
None = (Rerr (Rabort Rtype_error),s;)
| Some (args,exp’) =
if s1.clock < ficks + 1 then

(Rerr (Rabort Rtimeout_error),s; with clock := 0)

else

evaluate ([exp’] args,dec_clock (ticks + 1) s1))

| (Rerrvg,s1) = (Rerrvg,s;)

do_app (Const i) [| s = Rval (Number ,s)
do_app (Cons tag) xs s = Rval (Block tag xs,s)

“omyes

|18

Compilation Pipeline

DATAlang

prog =
Skip
e Turning BVL into an imperative language | Move num num
e Semi-manual GC with ‘MakeSpace’ | Call ((num X num_set) option) (num option)
e 'num'’s are variables (num 1list) ((num x prog) option)
e Used fqr optimizations in memory | Assign num op (num list) (num_set option)
allocations

| Seq prog prog

| If num prog prog

| MakeSpace num num_set

| Raise num

| Return num

| Tick

Radboud University 3% | 19

s
B
Tonyes®

Compilation Pipeline

DATALang

Explicit call stack
More direct error handling

Radboud University 3%

s
B
Tonyes®

¢ state = (7=

locals : v num_map; Number int

stack : frame list; | Word64 (64 word)
global : numoption; | Block num (v1ist)
handler : num; | CodePtr num

refs : num — v ref; | RefPtr num

clock : num;

code : (num X prog) num_map;

ffi : @ £fi_state;

space : num

)

frame = Env (vnum_map) | Exc (v num_map) num

o ref = ValueArray (a list) | ByteArray bool (8 word list)

| 20

Intermezzo: CakeML
Evaluation

21

Intermezzo

Explaining Evaluation using ANF

e (Sabry & Feleissen, 1992)
e Implicit in the BVL step
e ANF separates nested function calls into ‘let’ bindings TODO FIX THIS

Original ANF

EXP ::= A VAR . EXP EXP ::= VAL

| EXP EXP | let VAR = VAL in EXP

| VAR | let VAR = VAL VAL in EXP

| CONST

| let VAR = EXP in EXP VAL ::= VAR

| CONST
CONST ::=f | g | h | A VAR . EXP
CONST ::= f | g | h

Radboud University 3%} | 22

“omyes

Intermezzo

Explaining Evaluation using ANF

e Some more practical grammars

let VAR = EXP in EXP
if EXP then EXP else EXP

if VAL then EXP else EXP

%% Normal expressions %% ANF grammar
EXP ::= A var . EXP EXP ::= VAL
| EXP(EXP, ...) | let VAR = VAL in EXP
| VAR ’ | let VAR = VAL + VAL in EXP
| CONST | let VAR = VAL - VAL in EXP
| let VAR = VAL * VAL in EXP
| EXP = EXP] EXP = EXR | let VAR = VAL / VAL in EXP
I EXP * EXP | EXP / EXP | let VAR = VAL(VAL, ...)
|
|

::= A VAR . EXP
CONST ::=0 | 1] 2 ... | CONST
| VAR

Radboud University 3%

A

B

s
“omes

| 23

Intermezzo

Explaining Evaluation using ANF

def fac n = if n == 0 then 1 else fac(n - 1) * n

def fac n =
let b =n==0 1in

if b then 1 else (let n' =n -1 in
let acc = fac (n') in
n * acc)

Radboud University 3%

s
B
o\

| 24

PureCake

Radboud University 3%}
omes®

25

Purecake!

About PureCake

e Looks like Haskell
e Works* like Haskell
o Haslazy evaluation
o And substitution semantics
e Formalizes some of the things CakeML is using
e Compiles to CakeML

Radboud University 3%} | 26

“omyes

Purecake!

About Purecake

exp_of (case x = ceof rown)

expand, [cname[y,| — ce’, Towy, |]

def

expand, [] = fail

ce :

| cons cname
| tuple

| prim primop
| monadic mop

if (eq> cname n (var x)) then

let y,

else expand, [Towp, |

var x
opl e
A i€
ce- ce,
let x = ce; in cey

letrec x,, = ce, in ce
seq ce; ce;

case x = ceof cname,| X, m | — cen

Radboud University {g5t
v

" letx = exp_of ce in expand, [Tow, |

= proj, cname (var x) in (exp_of ce)

var x
op[en]

Ax. e

€1 €

letx =¢; in e
letrecx, = ¢, in e
seq e e

if ethen e; else e,
eq; cname arity e
proj, cname e

| 27

PureCake: Evaluation

Radboud University 3%}
omes®

28

Purecake evaluation

1/0 Effects (Interaction trees)

e Unlike CakeML, we want to model all possible interactions with the outside
world
o We can use Interaction Trees (Li-yao Xia et al. 2019)
e Co-inductive datatype that can represent all kinds of semantics

itree E R ::= Ret (r : R) | Tau (t : itree ER) | Vis (A : Type) (e : EA) (k: A — itree E R)

itree EAR :=Ret (r:R) | Div|Vis(e: E) (k:A — itree EAR)

Radboud University 3%

s

3

s
Tone®

| 29

Explained questions

Continuations

All programs have a past, a present and a future

e The past:
o Variables
o Assigned memory
e The present
o The expression we're currently evaluating
o Theinstruction we're currently running
e The future
o Return pointers etc.
o Continuations!
e Continuations are modeled as a function, with the current expression result as
input, and the program result as output

Radboud University 3%} | 30

“omyes

Purecake evaluation

1/0

Effects (Interaction trees)

itree EAR ::=Ret (r:R) | Div| Vis (e: E) (k: A — itree EAR)

wh

| constructor cname| e, | Ep= R
| tuple [e,] | ffi(ch,s) | termmatlon
| monadic mop| e, | A= | error
| lambda x e | oks | fail
| literal lit | failg di =
, | divergey
| error | divergeg;
| diverge

Radboud University 3$? [31
"o

Purecake evaluation

1/0 Effects (Interaction trees)

(diverge, k, o) = Div (error, k, o)) = Ret error
(bind ¢, ey, k, o) = (eval,, €;, bind e e, :: k, o)
(returne, ¢ o) = Ret termination
(returne;, bind e e, :: k, o)) = (evaly, (e; -), k, o)
(raise e;, frame:: ...: handle o e, : k, o) = (eval,, (e - €1), k, o)
eval,, e = literal (locl) = (lene, k, o)) = (return (int |o(])|), x, o)
(]action (msgchs), k, o)) = Vis (ch,s) (Aa. ...)
where bind e, ez “" monadic bind|e, e,], similarly for other monadic operations above.

Radboud University 3$? | 32
"o

Purecake evaluation

Demand analysis

4 main :: I0 ()

5 main = do

6 argl <- read_argl

7 let n = fromString argl

8 print $ "Finding longest Collatz sequence less than " ++ toString n

° By default, all variables are stored in 9 let res = maxCollatzSequence n
10 print $ "Number with longest sequence: " ++ toString (fst res)

"‘EE’I’ l'l(!l]\()r)[11 print $ "Length of sequence: " ++ toString (snd res)
e Goal: Make as much as possible eager 2 Retl

Without affecting Semantics 14 maxCollatzSequence :: Integer -> (Integer, Integer)

. o ¥ 15 maxCollatzSequence n = maxIndex (take n collatzSequences)
e Special case: ‘seq 16
H s 17 collatzSequences :: [Integer]

e Demand anaIVSIS says nOthln about 18 collatzSequences = map collatzSequence (numbers 0)

evaluation order 19

20 collatzSequence :: Integer -> Integer
21 collatzSequence n =
22 let segAux acc n =

23 if n < 1 then (0-1)

24 else if n == 1 then acc

25 else seqAux (acc + 1) (collatz n)
26 in segAux 0 n

27

28 collatz :: Integer -> Integer
29 collatz n = if n "'mod” 2 == @ then n "div’: 2 else 3 * n + 1

Radboud University *%} | 33
OniNes

2

Purecake evaluation

Demand analysis

CtFk (Var x) demands x C F ey demands x X FYy

CF (lety = e in e;) demands x
C + ey demands x

C F e; demands y C F e; demands x
CF (lety =e; in e;) demands x C + (seqe; e2) demands x
C F e, demands x [let x = L in seq fail (var x) | = Ret error
C + (seqe; e;) demands x [let x = L in seq (var x) (seq fail (var x)) | = Div

Radboud University 3%

s
B
Tonyes®

| 34

Purecake Evaluation

Demand Analysis

e Things get tricky when analysing functions & function calls though
e Three cases:
o Applied expressions need to be demanded

aer

edemandss (n,m) = Vx e,. e, demands x = (e- e,) demands x

o Function arguments need to be demanded when they are applied
def J— -
edemands,,, (x,n) = VYe,. (e- e,) demands x
o Therecursive case
(Vf’ dsxs € d. (f’, ds, Axs. €’) € binds A d € ds = (reformulate binds €') demands d)
= letrec { f =¢f | (f. ds, ef) € binds } e =~
letrec {f = mark_demanded ds er | (f, ds, ef) € binds } e

Radboud University 3%} | 35

“omyes

Compiling PureCake

Radboud University 3%

B
E
o\

36

Purecake compilation

Parsing

e We have indents now, so no normal CFG
e Instead, we add an indentation indicators to our CFGs

Decl| — |[ldent|™ ’::” 7 Ty~
e We can now calculate the “Indentation sets of non-terminals
o Either a closed set of possible indentations (i to j no. of indents)
o Alower-bounded set (i or more no. of indents)
o Any number of indents
o Nowhere (this would be a parsing error)
e Resultis the program AST, represented as a giant letrec-statement

Radboud University 3%}

“omyes

| 37

Purecake compilation

Type inference

e Classical Hindley-Milner algorithms give bad error messages
e We'll use a constraint-based system instead

Fr—celzrl a_n¢F

ILx:Va,.1ikce: T TorVARr
e 2" 2 HMLer Mrvarx:a = [x:a]; @

I'Fletx =ce in ce; : 1y
an, Mrce: 7" = A; C

TorLam
Mr(Ax,.ce):(a, - 7)) > A\ x; CUU,{tr=a,|x,: T € A}

Mbrcep:11 > A1; Ct Mbrce:1p = Ay ; &

TorLET
Mr(letx=cerincey) : 15 = A UA \x; CGCUGU{tyn|x:7 € Ay}

Radboud University 3% | 38

s
B
Tonyes®

Purecake Compilation

Type Inference

e We now have constraints
e Constraint solving is “straight-forward” and “omitted"”

Radboud University 3%} | 39

“omyes

Purecake Compilation

Demand Analysis

e We've already done this
e Resultis adding ‘seq’ to expressions we know we can demand without affecting
semantics

Radboud University 3%} | 40

“omyes

Purecake compilation

Backend: The lLs

e Instead of proving semantics preservation with functions, we use relations
between different ILs
o More flexible than functions
o Means we don't need to keep track of compiler invariants between all our functions
e We can then reconstruct a function out of the relations we've made

Radboud University 3%} | 41

“omyes

Purecake compilation

THUNKLang

e Very similar to the source language
Eagerly evaluated
e 2 new constructs
o delay: turns an expression into a thunk
o force: evaluates e to a thunk, then forces
evaluation of the thunk
e Note: at this point a thunk re-evaluates
every time it is forced!

delay :: a => (() -> a)
delay e = \() -> e

force :: (() -> a) -> a
force e = e ()

O 00 ~dO Ul B

Radboud University 3%} | 42
“omyes

Purecake compilation

THUNKLang

thunk L,/ thunk ,/
THKV. o O % % THKAPP
HK VAR . thunk o/ . /
var x thk force (var x) e1 - e 15 e - delay e
THKLET

/

— 1 thunk — /s
let x = ¢; in e; "™ letx = delay e} in ¢

ey MU el ey M el fresh ¢ freevars e,

THKSEQ

seq ey e; "k let fresh = e] in €]

Radboud University 3% | 43

s
B
Tonyes®

Purecake compilation

THUNKLang

e Note the simplicity in compilation thanks to demand analysis
o However, this translation introduces a lot of ‘delay(force(e))’ constructs
o Define arelation unthunk and prove ‘mk_delay’ satisfies this relation

def |Varx if ce = force (var x),
mk_delay ce = .
delay ce otherwise.

Radboud University 3%} | 44

“omyes

Purecake compilation

EnvLang

e We use environments, instead of substituting functions with their definitions

Radboud University 3%} | 45

“omyes

Purecake compilation

StatelLang

e Compile ‘delay’ and ‘force’ primitives into actual expressions
o ‘'delay’ computations are stored in a mutable array
o ‘force’ primitives are possible updates to the mutable array (if the value inside of it hasn't
been forced yet)
e Monadic operations are also compiled into thunk-style functions
o “Stateful operations” (Exceptions, mutable array handling, I/0 etc.) are turned into
special primitives
o Other operations are turned into computations that accept a unit input to perform the
actual operation.

Radboud University 3%} | 46

“omyes

Purecake compilation

StatelLang

| return ce| Lletx = |ce] in A_. varx

| raise ce] Llet x = | ce] in A_. raisepm(var x)

| bind ce; ce, | = A_. |lcey] - (| cer] - unit) - unit

| delay ce] £ alloc [false, A_. | ce]]

| force ce] Llet x = lce] ; x0 = x[0] ; x; = x[1] in

if var x; then var x; else
let w = (var x) - unit in

x[0] :=true ; x[1] := var w; var w

Radboud University 3%

s
B
Tonyes®

| 47

Purecake compilation

StatelLang

e We mostly need to prove that our operations on thunks are correct
o We need to prove that semantics preserve ‘EnvLang -> StateLang’ AND ‘StateLang ->
Envlang’
e A bit of cleanup:
o Remove cases of (A().ce)() and replace them with ‘ce’
e Semantics themselves are implemented by a CESK machine
o Relatively straight-forward
o Stateful primitives are implemented by the machine

Radboud University 3%} | 48

“omyes

Purecake compilation

From ITrees to CakeML

e We need to show that PureCake semantics are equivalent to CakeML semantics
e Adifferent CakeML project already implemented a CESK machine we can use
e Turn our interaction trees to CakeML semantics
o CakeML uses “oracle semantics”
o Remember: ITrees simulate all possible outside-world semantics
o We need to carve out the branch from our ITree that corresponds to the CakeML
semantics

Ale)=r A k(r)S tr = Visek S (e,r) :: tr

F target_configs_ok config machine A safe_itree [prog]. A
compile, config prog = Some code A code_in_memory config code machine
= [machine]m prunes [prog |-

Radboud University 3%} | 49

“omyes

Conclusion

Radboud University 3%}
omes®

50

The End!

The theorems we get from
PureCake

e The compiler compiles correct PureCake into correct CakeML
o That means that if the source code parses and type-checks, it compiles correctly
e Therefore, it compiles correct PureCake into correct machine code

F compiler str = Some ast. = + frontend str = Some (ce, ns) =
dce ns. frontend str = Some (ce, ns) A safe_itree [exp_of Ce]]pure A
safe_itree [[exp_of ce]]pure A dast.. compiler str = Some ast. A
itree_rel [exp_of ce]]pure [ast. |- itree_rel [exp_of ce]]pure [ast. |-

 compiler str = Some ast= A compile. config ast= = Some code A
target_configs_ok config machine A code_in_memory config code machine
= 3 ce ns. frontend str = Some (ce, ns) A [machine]y prunes [exp_of ce]

Radboud University 3%} | 51

“omyes

Values

abstract values incl. closures and ref pointers

abstract valuesincl.
ref and code pointers

Languages

D
Parse concrete syntax

Compiler transformations

D Infer types, exit if fail
2> Eliminate modules

names with numbers
Reduce daclarations to

) Replace constructor
no declarations) axps; introduce global vars

Make pattems exhaustive

Move nullary constructor
> patterns upwards

ClosLang:

closures)

WordLang:
imperative

memory and

language with
machine words,) Force two-reg code (if req.)

> Compile J)anern matches
(no pat. match) to nested Ifs and Lets
™ Reph

D Fuse function calls/fapps
into multi-arg callks/apps

D Track where closure values
flow;

High-level comments

Parsing and type inference

are essantially unchanged

from the previous version.
The initial phases of the
compiler backend
successively remove
features from the input
language. These phases
remove modules,
declarations, pattem
matching. All names are
turned into represantations
based on the natural
numbers, e.g. de Brujin
indicas are used for local
variables and constructor
names bacome numbers.

ClosLang is a language for
optimising function calls
before closure conversion.
These phases fuse all
single- function

last language P
with closures > Introduce C-style fast
(has multi-arg calls wherever possible

D Remove dead code

> Prepare for closure conv.
> Parform closure conv.
) Inline small functions

BVL:
functional Fold constants and
language shrink Lets
without > Splitover-sized functions
closures into many small functions

> Compile global vars into a
dynamically resized array

<> Optimise Lotexpressions
) Switch to imperative styla
D Reduce caller-saved vars

> Combine adjacent
memory allocations

ata repr.
D Simplify program
> Selact target instructions
> Parform SSA-like renaming

a GC primitive > Remove dead code

<> Alloca register names

StackLang:

machine words and code labels

< >C stack

> Implement GC primitive

imperative
Turn stack access into
language TGHOrY & Cotoe
with array-like = B
stack and > Renamae registers to m
optional GC arch registers/conventions

&> Flaten code
> Delete no-ops (Tick, Skip)
- Enoodf programas

gle-arg;
applications into trua multi-
argument applications, and
attempt to turn as many
function applications as
possible into fast C-like
calis to known functions.

The languages after closure
converstion but before data
bacomes concrete machine
words, i.e. languages from
BVL to DatalLang, are
particularly simple both to
write optimisations for

and for verification proofs.
The compiler parforms
many simple optimisations
inthese laguages, including
function infining, constant
foking and merging of
nearby memory allocations.

e ——

One of the most dalicate
compiler phases. This
introduces the bit-level
data representation, GC &
bignum implementation.

The rest of the compiler is
similar 1o the backend ofa
simple compiler for a C-like
language. Our compiler
implements fastlong jumps
in order to sgppon ML-style
axecptions. The compiler
differs from a C compiler
by having to interact with
and implement the GC.

The GC is introduced as a
language primitive on
con'ﬁllatlon into WordLang.
Further down in StackLang,
the GC is implementaed as a
helper function that is
attached to the currently
compiled program.

| The final stage tums a

front end (§ 4)

back end (§ 5)

Radboud University *%ﬁ

Language

Concrete syntax

PURELANG (§ 4.2)
ce from fig. 2
pure call-by-name
(subst. semantics)

THUNKLANG (§ 5.2)
pure call-by-value
(subst. semantics)

ENVLANG (§ 5.3)
pure call-by-value
(env. semantics)

STATELANG (§ 5.4)
impure call-by-value
(env. semantics)

CakeML source

RS AASNS

The End!

Conclusion

Compiler implementation

lexing, parsing, desugaring
split letrecs; simplify

type inference

simplify

demand analysis
annolates with seqs

Comments on verification

can reject input; unverified
preserves = (§ 3.4)

sound: rejects ill-typed programs
preserves = (§ 34)

preserves = (§ 4.4) and well-typing

AR VEAVEN L &L VLV S WPl

translate into call-by-value;
introduce delay/force:
avoid delay (force (var_))
lift A-abstractions out

of lets/letrecs

simplify force expressions
reformulate to simplify
compilation to STATELANG

compile delay/force and ~
10 monad to stateful ops

push _ - unit inwards -

make every A-abstraction
bind a variable

translate to CakeML;
attach helper functions

proof split into five relations;
implementation stays within their composition

implementation stays within transitive closure
of semantics-preserving syntactic relations

proof composed of three relations:
1. implement 10 monad statefully
2. implement delay/force statefully
3. tidy the result

implementation stays within fransitive closure
of semantics-preserving syntactic relation

| 52

Qand A

Radboud University 3%}
omes®

53

Expected Questions

“Why no proofs”

e The proofs are very big
o CakeML supposedly takes 22 hours and 16GB of ram to compile/bootstrap from source
e The proofs are more work than ideas

Radboud University 3% | 54

s
B
o\

Expected questions

“What is Co-inductivity?”

e Dual to inductive types
o Are generated using co-recursive functions
o Can be potentially infinite
o Cannot just be consumed by an inductive function

Radboud University 3%} | 55

“omyes

Expected Questions

Demand Analysis (vs Haskell)

20 collatzSequence :: Integer -> Integer
21 collatzSequence n =
22 let seqgAux acc n =

23 if n < 1 then (0-1)
24 else if n == 1 then acc
25 else seqAux (acc + 1) (collatz n)

26 in segAux 0 n

Radboud University *% | 56

%
o\

Expected Questions

Weak-Head Normal Form

Evaluate the expression until we're stuck at an incomplete lambda or an
uninterpretable function

e Normal Form: We cannot further evaluate the expression
o We've evaluated every lambda body as far as we can
o Basically symbolic evaluation
e Head Normal Form: We cannot find any lambdas to fill
o We've evaluated any top level function bodies
o (We don't really deal with HNF anymore)
e Weak Head Normal Form: We can’t do trivial substitutions anymore
o Any partially applied function will be substituted with its definition any the arguments
that were applied
o We don't do anything else.

Radboud University 3%}

“omyes

| 57

