
Proving PureCake (and cakeml)

Erik Oosting

Proving PureCake
(and CakeML)

1

| 2

Papers
Introduction

● The Verified CakeML Compiler Backend
○ (https://doi.org/10.1017/S0956796818000229)

● PureCake: A verified compiler for a lazy functional language
○ (https://doi.org/10.1145/3591259)

https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1145/3591259

Outline
● Introduction
● CakeML (Compilation)
● PureCake Evaluation
● PureCake Compilation

Introduction

| 3

About CakeML
Introduction

| 4

● Formally verified compiler for a dialect of Standard ML

About CakeML
Introduction

| 5

● Formally verified compiler for a dialect of Standard ML
● Takes resource constraints into account for it’s proof of correct compilation

About CakeML
Introduction

| 6

● Formally verified compiler for a dialect of Standard ML
● Takes resource constraints into account for it’s proof of correct compilation
● Implemented in HOL4

About CakeML
Introduction

| 7

● Formally verified compiler for a dialect of Standard ML
● Takes resource constraints into account for it’s proof of correct compilation
● Implemented in HOL4

○ Theorems and proofs as data

About CakeML
Introduction

| 8

● Formally verified compiler for a dialect of Standard ML
● Takes resource constraints into account for it’s proof of correct compilation
● Implemented in HOL4

○ Theorems and proofs as data
○ Simply typed

About CakeML
Introduction

| 9

| 10

About PureCake
Introduction

● Lazily evaluated
● A bit more complicated

| 11

About this presentation
Introduction

| 12

About this presentation
Introduction

● These papers are about a lot of stuff

| 13

About this presentation
Introduction

● These papers are about a lot of stuff
○ CakeML and PureCake are big projects

| 14

About this presentation
Introduction

● These papers are about a lot of stuff
○ CakeML and PureCake are big projects
○ A lot of compiler techniques are used to get to where

we are

| 15

About this presentation
Introduction

● These papers are about a lot of stuff
○ CakeML and PureCake are big projects
○ A lot of compiler techniques are used to get to where

we are
● I like reading about compilers a lot…

| 16

About this presentation
Introduction

● These papers are about a lot of stuff
○ CakeML and PureCake are big projects
○ A lot of compiler techniques are used to get to where

we are
● I like reading about compilers a lot…

| 17

How to make a compiler
Introduction

| 18

How to make a compiler
● Figure out what your starting (source) language does

Introduction

| 19

How to make a compiler
● Figure out what your starting (source) language does

○ What makes a program in the starting language correct?

Introduction

| 20

How to make a compiler
● Figure out what your starting (source) language does

○ What makes a program in the starting language correct?
○ What outside behaviours does it have?

Introduction

| 21

How to make a compiler
● Figure out what your starting (source) language does

○ What makes a program in the starting language correct?
○ What outside behaviours does it have?

● Figure out what your target language does

Introduction

| 22

How to make a compiler
● Figure out what your starting (source) language does

○ What makes a program in the starting language correct?
○ What outside behaviours does it have?

● Figure out what your target language does
○ What does it do different from the source language?

Introduction

| 23

How to make a compiler
● Figure out what your starting (source) language does

○ What makes a program in the starting language correct?
○ What outside behaviours does it have?

● Figure out what your target language does
○ What does it do different from the source language?
○ How are you going to wrangle the behaviour of the source language into the target

language?

Introduction

| 24

How to make a compiler
● Figure out what your starting (source) language does

○ What makes a program in the starting language correct?
○ What outside behaviours does it have?

● Figure out what your target language does
○ What does it do different from the source language?
○ How are you going to wrangle the behaviour of the source language into the target

language?
● Recommended: make more compilers

Introduction

| 25

How to make a compiler
● Figure out what your starting (source) language does

○ What makes a program in the starting language correct?
○ What outside behaviours does it have?

● Figure out what your target language does
○ What does it do different from the source language?
○ How are you going to wrangle the behaviour of the source language into the target

language?
● Recommended: make more compilers

○ Define Intermediate Languages

Introduction

| 26

How to make a compiler
● Figure out what your starting (source) language does

○ What makes a program in the starting language correct?
○ What outside behaviours does it have?

● Figure out what your target language does
○ What does it do different from the source language?
○ How are you going to wrangle the behaviour of the source language into the target

language?
● Recommended: make more compilers

○ Define Intermediate Languages
○ Put the compilers for all your intermediate languages together

Introduction

● Make sure all programs “behave as expected”
○ No memory leaks
○ “Semantics” between source and target stay the same

How to prove a compiler
Introduction

| 27

Context: CakeML

28

● Approachable to newcomers
○ Easily extensible
○ Usable for future research/student projects

● Keep the computer in mind
○ Computers don’t have infinite memory. We can run out!

● Juusst the right number of intermediate languages
○ Too many and we have a lot of unnecessary work
○ Too little and the compilation steps become too convoluted to prove

CakeML Design Goals
Context: CakeML

| 29

I/O effects
Context: CakeML

| 30

The CakeML
compilation pipeline

31

We need a correctness proof for every compilation step.
● config -> Arbitrary machine config
● “syntactic_condition” -> no errors in the program

General Compiler proofs
Compilation pipeline

| 32

The program may run out of memory:

General Compiler proofs
Compilation pipeline

| 33

● Using a Parsing Expression Grammar
○ Order sensitive
○ Non-terminals have a rank based on the input they consume
○ Ranks ensure that the parser consume input

● Type inference
○ Uses “triangular substitution”
○ No let-polymorphism

● Removing syntactic language features
○ No modules, ADTs, incomplete pattern matches,

names
● Result: A fully typed, nameless, simple

programming language

Parsing to an AST
Compilation Pipeline

| 34

● Functions -> Closures
● Used for lambda lifting
● Closures:

○ (Optional) location of the closure
○ Evaluation environment (values for free variables ‘Var’ in

the environment)
○ Arguments already passed to the closure
○ Number of arguments the closure still needs
○ The closure body

● Recursive closures
○ Same as closures, except this time a list of needed

arguments and function bodies
○ Finally, a list index indicating where to start evaluation

CLOSLang
Compilation pipeline

| 35

● No closures!
● Type checking happens here
● ‘Closure’ ->

● ‘RecClosure’ ->

The ByteVectorLangauge (BVL)
Compilation Pipeline

| 36

| 37

● Turning BVL into an imperative language
● Semi-manual GC with ‘MakeSpace’
● ‘num’s are variables
● Used for optimizations in memory

allocations

DATAlang
Compilation Pipeline

| 38

| 39

DATALang
Compilation Pipeline

● Explicit call stack
● More direct error handling

Intermezzo: CakeML
Evaluation

40

● (Sabry & Feleissen, 1992)
● Implicit in the BVL step
● ANF separates nested function calls into ‘let’ bindings TODO FIX THIS

Explaining Evaluation using ANF
Intermezzo

| 41

| 42

Explaining Evaluation using ANF
Intermezzo

● Some more practical grammars

| 43

Explaining Evaluation using ANF
Intermezzo

PureCake

44

About PureCake
Purecake!

● Looks like Haskell
● Works* like Haskell

○ Has lazy evaluation
○ And substitution semantics

● Formalizes some of the things CakeML is using
● Compiles to CakeML

| 45

About PureCake
Purecake!

● Looks like Haskell
● Works* like Haskell

○ Has lazy evaluation
○ And substitution semantics

● Formalizes some of the things CakeML is using
● Compiles to CakeML

| 46

About PureCake
Purecake!

● Looks like Haskell
● Works* like Haskell

○ Has lazy evaluation
○ And substitution semantics

● Formalizes some of the things CakeML is using
● Compiles to CakeML

| 47

PureCake: Evaluation

48

I/O Effects (Interaction trees)
Purecake evaluation

● Unlike CakeML, we want to model all possible interactions with the outside world
○ We can use Interaction Trees (Li-yao Xia et al. 2019)

● Co-inductive datatype that can represent all kinds of semantics

| 49

I/O Effects (Interaction trees)
Purecake evaluation

● Unlike CakeML, we want to model all possible interactions with the outside world
○ We can use Interaction Trees (Li-yao Xia et al. 2019)

● Co-inductive datatype that can represent all kinds of semantics

| 50

I/O Effects (Interaction trees)
Purecake evaluation

● Unlike CakeML, we want to model all possible interactions with the outside world
○ We can use Interaction Trees (Li-yao Xia et al. 2019)

● Co-inductive datatype that can represent all kinds of semantics

| 51

| 52

Continuations
Explained questions

| 53

Continuations
Explained questions

All programs have a past, a present and a future

| 54

Continuations
Explained questions

All programs have a past, a present and a future
● The past:

| 55

Continuations
Explained questions

All programs have a past, a present and a future
● The past:

○ Variables

| 56

Continuations
Explained questions

All programs have a past, a present and a future
● The past:

○ Variables
○ Assigned memory

| 57

Continuations
Explained questions

All programs have a past, a present and a future
● The past:

○ Variables
○ Assigned memory

● The present

| 58

Continuations
Explained questions

All programs have a past, a present and a future
● The past:

○ Variables
○ Assigned memory

● The present
○ The expression we’re currently evaluating

| 59

Continuations
Explained questions

All programs have a past, a present and a future
● The past:

○ Variables
○ Assigned memory

● The present
○ The expression we’re currently evaluating
○ The instruction we’re currently running

| 60

Continuations
Explained questions

All programs have a past, a present and a future
● The past:

○ Variables
○ Assigned memory

● The present
○ The expression we’re currently evaluating
○ The instruction we’re currently running

● The future

| 61

Continuations
Explained questions

All programs have a past, a present and a future
● The past:

○ Variables
○ Assigned memory

● The present
○ The expression we’re currently evaluating
○ The instruction we’re currently running

● The future
○ Return pointers etc.

| 62

Continuations
Explained questions

All programs have a past, a present and a future
● The past:

○ Variables
○ Assigned memory

● The present
○ The expression we’re currently evaluating
○ The instruction we’re currently running

● The future
○ Return pointers etc.
○ Continuations!

| 63

Continuations
Explained questions

All programs have a past, a present and a future
● The past:

○ Variables
○ Assigned memory

● The present
○ The expression we’re currently evaluating
○ The instruction we’re currently running

● The future
○ Return pointers etc.
○ Continuations!

● Continuations are modeled as a function, with the current expression result as input,
and the program result as output

| 64

I/O Effects (Interaction trees)
Purecake evaluation

| 65

I/O Effects (Interaction trees)
Purecake evaluation

Demand analysis
Purecake evaluation

● By default, all variables are stored in
heap memory

● Goal: Make as much as possible eager
without affecting semantics

● Special case: ‘seq’
● Demand analysis says nothing about

evaluation order

| 66

| 67

Demand analysis
Purecake evaluation

| 68

Demand Analysis
Purecake Evaluation

| 69

Demand Analysis
Purecake Evaluation

● Things get tricky when analysing functions & function calls though
● Three cases:

| 70

Demand Analysis
Purecake Evaluation

● Things get tricky when analysing functions & function calls though
● Three cases:

○ Applied expressions need to be demanded

| 71

Demand Analysis
Purecake Evaluation

● Things get tricky when analysing functions & function calls though
● Three cases:

○ Applied expressions need to be demanded

○ Function arguments need to be demanded when they are applied

| 72

Demand Analysis
Purecake Evaluation

● Things get tricky when analysing functions & function calls though
● Three cases:

○ Applied expressions need to be demanded

○ Function arguments need to be demanded when they are applied

○ The recursive case

| 73

Demand Analysis
Purecake Evaluation

● Things get tricky when analysing functions & function calls though
● Three cases:

○ Applied expressions need to be demanded

○ Function arguments need to be demanded when they are applied

○ The recursive case

Compiling PureCake

74

Parsing
Purecake compilation

● We have indents now, so no normal CFG
● Instead, we add an indentation indicators to our CFGs

| 75

Parsing
Purecake compilation

● We have indents now, so no normal CFG
● Instead, we add an indentation indicators to our CFGs

| 76

Parsing
Purecake compilation

● We have indents now, so no normal CFG
● Instead, we add an indentation indicators to our CFGs

| 77

● We can now calculate the “Indentation sets of non-terminals

Parsing
Purecake compilation

● We have indents now, so no normal CFG
● Instead, we add an indentation indicators to our CFGs

| 78

● We can now calculate the “Indentation sets of non-terminals
○ Either a closed set of possible indentations (i to j no. of indents)

Parsing
Purecake compilation

● We have indents now, so no normal CFG
● Instead, we add an indentation indicators to our CFGs

| 79

● We can now calculate the “Indentation sets of non-terminals
○ Either a closed set of possible indentations (i to j no. of indents)
○ A lower-bounded set (i or more no. of indents)

Parsing
Purecake compilation

● We have indents now, so no normal CFG
● Instead, we add an indentation indicators to our CFGs

| 80

● We can now calculate the “Indentation sets of non-terminals
○ Either a closed set of possible indentations (i to j no. of indents)
○ A lower-bounded set (i or more no. of indents)
○ Any number of indents

Parsing
Purecake compilation

● We have indents now, so no normal CFG
● Instead, we add an indentation indicators to our CFGs

| 81

● We can now calculate the “Indentation sets of non-terminals
○ Either a closed set of possible indentations (i to j no. of indents)
○ A lower-bounded set (i or more no. of indents)
○ Any number of indents
○ Nowhere (this would be a parsing error)

Parsing
Purecake compilation

● We have indents now, so no normal CFG
● Instead, we add an indentation indicators to our CFGs

| 82

● We can now calculate the “Indentation sets of non-terminals
○ Either a closed set of possible indentations (i to j no. of indents)
○ A lower-bounded set (i or more no. of indents)
○ Any number of indents
○ Nowhere (this would be a parsing error)

● Result is the program AST, represented as a giant letrec-statement

Type inference
Purecake compilation

● Classical Hindley-Milner algorithms give bad error messages
● We’ll use a constraint-based system instead

| 83

| 84

Type Inference
Purecake Compilation

| 85

Type Inference
Purecake Compilation

● We now have constraints

| 86

Type Inference
Purecake Compilation

● We now have constraints
● Constraint solving is “straight-forward” and “omitted”

| 87

Demand Analysis
Purecake Compilation

| 88

Demand Analysis
Purecake Compilation

● We’ve already done this

| 89

Demand Analysis
Purecake Compilation

● We’ve already done this
● Result is adding ‘seq’ to expressions we know we can demand without affecting

semantics

| 90

Backend: The ILs
Purecake compilation

● Instead of proving semantics preservation with functions, we use relations between
different ILs
○ More flexible than functions
○ Means we don’t need to keep track of compiler invariants between all our functions

● We can then reconstruct a function out of the relations we’ve made

THUNKLang
Purecake compilation

● Very similar to the source language
● Eagerly evaluated
● 2 new constructs

○ delay: turns an expression into a thunk
○ force: evaluates e to a thunk, then forces

evaluation of the thunk
● Note: at this point a thunk re-evaluates

every time it is forced!

| 91

| 92

THUNKLang
Purecake compilation

| 93

THUNKLang
Purecake compilation

● Note the simplicity in compilation thanks to demand analysis
○ However, this translation introduces a lot of ‘delay(force(e))’ constructs
○ Define a relation unthunk and prove ‘mk_delay’ satisfies this relation

EnvLang
Purecake compilation

● We use environments, instead of substituting functions with their definitions

| 94

StateLang
Purecake compilation

● Compile ‘delay’ and ‘force’ primitives into actual expressions
○ ‘delay’ computations are stored in a mutable array
○ ‘force’ primitives are possible updates to the mutable array (if the value inside of it hasn’t

been forced yet)
● Monadic operations are also compiled into thunk-style functions

○ “Stateful operations” (Exceptions, mutable array handling, I/O etc.) are turned into
special primitives

○ Other operations are turned into computations that accept a unit input to perform the
actual operation.

| 95

| 96

StateLang
Purecake compilation

| 97

StateLang
Purecake compilation

| 98

StateLang
Purecake compilation

● We mostly need to prove that our operations on thunks are correct

| 99

StateLang
Purecake compilation

● We mostly need to prove that our operations on thunks are correct
○ We need to prove that semantics preserve ‘EnvLang -> StateLang’ AND ‘StateLang ->

Envlang’

| 100

StateLang
Purecake compilation

● We mostly need to prove that our operations on thunks are correct
○ We need to prove that semantics preserve ‘EnvLang -> StateLang’ AND ‘StateLang ->

Envlang’
● A bit of cleanup:

| 101

StateLang
Purecake compilation

● We mostly need to prove that our operations on thunks are correct
○ We need to prove that semantics preserve ‘EnvLang -> StateLang’ AND ‘StateLang ->

Envlang’
● A bit of cleanup:

○ Remove cases of ‘(λ().ce)()’ and replace them with ‘ce’

| 102

StateLang
Purecake compilation

● We mostly need to prove that our operations on thunks are correct
○ We need to prove that semantics preserve ‘EnvLang -> StateLang’ AND ‘StateLang ->

Envlang’
● A bit of cleanup:

○ Remove cases of ‘(λ().ce)()’ and replace them with ‘ce’
● Semantics themselves are implemented by a CESK machine

| 103

StateLang
Purecake compilation

● We mostly need to prove that our operations on thunks are correct
○ We need to prove that semantics preserve ‘EnvLang -> StateLang’ AND ‘StateLang ->

Envlang’
● A bit of cleanup:

○ Remove cases of ‘(λ().ce)()’ and replace them with ‘ce’
● Semantics themselves are implemented by a CESK machine

○ Relatively straight-forward

| 104

StateLang
Purecake compilation

● We mostly need to prove that our operations on thunks are correct
○ We need to prove that semantics preserve ‘EnvLang -> StateLang’ AND ‘StateLang ->

Envlang’
● A bit of cleanup:

○ Remove cases of ‘(λ().ce)()’ and replace them with ‘ce’
● Semantics themselves are implemented by a CESK machine

○ Relatively straight-forward
○ Stateful primitives are implemented by the machine

From ITrees to CakeML
Purecake compilation

| 105

From ITrees to CakeML
Purecake compilation

● We need to show that PureCake semantics are equivalent to CakeML semantics

| 106

From ITrees to CakeML
Purecake compilation

● We need to show that PureCake semantics are equivalent to CakeML semantics
● A different CakeML project already implemented a CESK machine we can use

| 107

From ITrees to CakeML
Purecake compilation

● We need to show that PureCake semantics are equivalent to CakeML semantics
● A different CakeML project already implemented a CESK machine we can use
● Turn our interaction trees to CakeML semantics

| 108

From ITrees to CakeML
Purecake compilation

● We need to show that PureCake semantics are equivalent to CakeML semantics
● A different CakeML project already implemented a CESK machine we can use
● Turn our interaction trees to CakeML semantics

○ CakeML uses “oracle semantics”

| 109

From ITrees to CakeML
Purecake compilation

● We need to show that PureCake semantics are equivalent to CakeML semantics
● A different CakeML project already implemented a CESK machine we can use
● Turn our interaction trees to CakeML semantics

○ CakeML uses “oracle semantics”
○ Remember: ITrees simulate all possible outside-world semantics

| 110

From ITrees to CakeML
Purecake compilation

● We need to show that PureCake semantics are equivalent to CakeML semantics
● A different CakeML project already implemented a CESK machine we can use
● Turn our interaction trees to CakeML semantics

○ CakeML uses “oracle semantics”
○ Remember: ITrees simulate all possible outside-world semantics
○ We need to carve out the branch from our ITree that corresponds to the CakeML

semantics

| 111

From ITrees to CakeML
Purecake compilation

● We need to show that PureCake semantics are equivalent to CakeML semantics
● A different CakeML project already implemented a CESK machine we can use
● Turn our interaction trees to CakeML semantics

○ CakeML uses “oracle semantics”
○ Remember: ITrees simulate all possible outside-world semantics
○ We need to carve out the branch from our ITree that corresponds to the CakeML

semantics

| 112

From ITrees to CakeML
Purecake compilation

● We need to show that PureCake semantics are equivalent to CakeML semantics
● A different CakeML project already implemented a CESK machine we can use
● Turn our interaction trees to CakeML semantics

○ CakeML uses “oracle semantics”
○ Remember: ITrees simulate all possible outside-world semantics
○ We need to carve out the branch from our ITree that corresponds to the CakeML

semantics

| 113

Conclusion

114

| 115

The theorems we get from
PureCake

The End!

| 116

The theorems we get from
PureCake

The End!

● The compiler compiles correct PureCake into correct CakeML

| 117

The theorems we get from
PureCake

The End!

● The compiler compiles correct PureCake into correct CakeML
○ That means that if the source code parses and type-checks, it compiles correctly

| 118

The theorems we get from
PureCake

The End!

● The compiler compiles correct PureCake into correct CakeML
○ That means that if the source code parses and type-checks, it compiles correctly

● Therefore, it compiles correct PureCake into correct machine code

Conclusion
The End!

| 119

Q and A

120

| 121

“Why no proofs”
Expected Questions

● The proofs are very big
○ CakeML supposedly takes 22 hours and 16GB of ram to compile/bootstrap from source

● The proofs are more work than ideas

| 122

“What is Co-inductivity?”
Expected questions

● Dual to inductive types
○ Are generated using co-recursive functions
○ Can be potentially infinite
○ Cannot just be consumed by an inductive function

| 123

Demand Analysis (vs Haskell)
Expected Questions

| 124

Demand Analysis (vs Haskell)
Expected Questions

| 125

Demand Analysis (vs Haskell)
Expected Questions

| 126

Demand Analysis (vs Haskell)
Expected Questions

| 127

Demand Analysis (vs Haskell)
Expected Questions

| 128

Demand Analysis (vs Haskell)
Expected Questions

| 129

Demand Analysis (vs Haskell)
Expected Questions

| 130

Demand Analysis (vs Haskell)
Expected Questions

| 131

Demand Analysis (vs Haskell)
Expected Questions

| 132

Demand Analysis (vs Haskell)
Expected Questions

| 133

Weak-Head Normal Form
Expected Questions

| 134

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable
function

| 135

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable
function
● Normal Form: We cannot further evaluate the expression

| 136

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can

| 137

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can
○ Basically symbolic evaluation

| 138

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can
○ Basically symbolic evaluation

● Head Normal Form: We cannot find any lambdas to fill

| 139

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can
○ Basically symbolic evaluation

● Head Normal Form: We cannot find any lambdas to fill
○ We’ve evaluated any top level function bodies

| 140

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can
○ Basically symbolic evaluation

● Head Normal Form: We cannot find any lambdas to fill
○ We’ve evaluated any top level function bodies
○ (We don’t really deal with HNF anymore)

| 141

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can
○ Basically symbolic evaluation

● Head Normal Form: We cannot find any lambdas to fill
○ We’ve evaluated any top level function bodies
○ (We don’t really deal with HNF anymore)

● Weak Head Normal Form: We can’t do trivial substitutions anymore

| 142

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can
○ Basically symbolic evaluation

● Head Normal Form: We cannot find any lambdas to fill
○ We’ve evaluated any top level function bodies
○ (We don’t really deal with HNF anymore)

● Weak Head Normal Form: We can’t do trivial substitutions anymore
○ Any partially applied function will be substituted with its definition any the arguments

that were applied

| 143

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can
○ Basically symbolic evaluation

● Head Normal Form: We cannot find any lambdas to fill
○ We’ve evaluated any top level function bodies
○ (We don’t really deal with HNF anymore)

● Weak Head Normal Form: We can’t do trivial substitutions anymore
○ Any partially applied function will be substituted with its definition any the arguments

that were applied
○ We don’t do anything else.

	Slide: 1
	Papers
	Outline
	About CakeML (1)
	About CakeML (2)
	About CakeML (3)
	About CakeML (4)
	About CakeML (5)
	About CakeML (6)
	About PureCake
	About this presentation (1)
	About this presentation (2)
	About this presentation (3)
	About this presentation (4)
	About this presentation (5)
	About this presentation (6)
	How to make a compiler (1)
	How to make a compiler (2)
	How to make a compiler (3)
	How to make a compiler (4)
	How to make a compiler (5)
	How to make a compiler (6)
	How to make a compiler (7)
	How to make a compiler (8)
	How to make a compiler (9)
	How to make a compiler (10)
	How to prove a compiler
	Slide: 9
	CakeML Design Goals
	I/O effects
	Slide: 12
	General Compiler proofs
	General Compiler proofs
	Parsing to an AST
	CLOSLang
	The ByteVectorLangauge (BVL)
	Slide: 18
	DATAlang
	DATALang
	Slide: 21
	Explaining Evaluation using ANF
	Explaining Evaluation using ANF
	Explaining Evaluation using ANF
	Slide: 25
	About PureCake (1)
	About PureCake (2)
	About PureCake (3)
	Slide: 27
	I/O Effects (Interaction trees) (1)
	I/O Effects (Interaction trees) (2)
	I/O Effects (Interaction trees) (3)
	Continuations (1)
	Continuations (2)
	Continuations (3)
	Continuations (4)
	Continuations (5)
	Continuations (6)
	Continuations (7)
	Continuations (8)
	Continuations (9)
	Continuations (10)
	Continuations (11)
	Continuations (12)
	I/O Effects (Interaction trees)
	I/O Effects (Interaction trees)
	Demand analysis
	Demand analysis
	Demand Analysis (1)
	Demand Analysis (2)
	Demand Analysis (3)
	Demand Analysis (4)
	Demand Analysis (5)
	Demand Analysis (6)
	Slide: 35
	Parsing (1)
	Parsing (2)
	Parsing (3)
	Parsing (4)
	Parsing (5)
	Parsing (6)
	Parsing (7)
	Parsing (8)
	Type inference
	Type Inference (1)
	Type Inference (2)
	Type Inference (3)
	Demand Analysis (1)
	Demand Analysis (2)
	Demand Analysis (3)
	Backend: The ILs
	THUNKLang
	THUNKLang
	THUNKLang
	EnvLang
	StateLang
	StateLang
	StateLang (1)
	StateLang (2)
	StateLang (3)
	StateLang (4)
	StateLang (5)
	StateLang (6)
	StateLang (7)
	StateLang (8)
	From ITrees to CakeML (1)
	From ITrees to CakeML (2)
	From ITrees to CakeML (3)
	From ITrees to CakeML (4)
	From ITrees to CakeML (5)
	From ITrees to CakeML (6)
	From ITrees to CakeML (7)
	From ITrees to CakeML (8)
	From ITrees to CakeML (9)
	Slide: 49
	The theorems we get from PureCake (1)
	The theorems we get from PureCake (2)
	The theorems we get from PureCake (3)
	The theorems we get from PureCake (4)
	Conclusion
	Slide: 52
	“Why no proofs”
	“What is Co-inductivity?”
	Demand Analysis (vs Haskell) (1)
	Demand Analysis (vs Haskell) (2)
	Demand Analysis (vs Haskell) (3)
	Demand Analysis (vs Haskell) (4)
	Demand Analysis (vs Haskell) (5)
	Demand Analysis (vs Haskell) (6)
	Demand Analysis (vs Haskell) (7)
	Demand Analysis (vs Haskell) (8)
	Demand Analysis (vs Haskell) (9)
	Demand Analysis (vs Haskell) (10)
	Weak-Head Normal Form (1)
	Weak-Head Normal Form (2)
	Weak-Head Normal Form (3)
	Weak-Head Normal Form (4)
	Weak-Head Normal Form (5)
	Weak-Head Normal Form (6)
	Weak-Head Normal Form (7)
	Weak-Head Normal Form (8)
	Weak-Head Normal Form (9)
	Weak-Head Normal Form (10)
	Weak-Head Normal Form (11)

