Proving PureCake
(and CakeML)



Introduction

Papers

e The Verified CakeML Compiler Backend
o (https://doi.org/10.1017/S0956796818000229)

e PureCake: A verified compiler for a lazy functional language
o (https://doi.org/10.1145/3591259)
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Introduction

About CakeML

fun fac n = if n = @ then 1 else fac (h-1) * n;

fun main ()
let
val arg = List.hd (CommandLine.arguments())
val n = Option.valof (Int.fromString arg)

in
print_int (fac n) ; print "\n"
end
handle _ =>
TextIO.print_err ("usage: " A CommandLine.name() A " <n>\n");
main ();
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Introduction

About CakeML

e Formally verified compiler for a dialect of Standard ML
e Takes resource constraints into account for it's proof of correct compilation
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Introduction

About CakeML

Formally verified compiler for a dialect of Standard ML
Takes resource constraints into account for it's proof of correct compilation

Implemented in HOL4

fun fac n = if n = @ then 1 else fac (h-1) * n;

fun main ()
let
val arg = List.hd (CommandLine.arguments())
val n = Option.valof (Int.fromString arg)

in
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Introduction

About CakeML

e Formally verified compiler for a dialect of Standard ML
e Takes resource constraints into account for it's proof of correct compilation
e Implemented in HOL4

© Theorems and prOOfS as data fun fac n = if n = @ then 1 else fac (h-1) * n;

fun main ()
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val arg = List.hd (CommandLine.arguments())
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Introduction

About CakeML

e Formally verified compiler for a dialect of Standard ML
e Takes resource constraints into account for it's proof of correct compilation
e Implemented in HOL4

© Theorems and prOOfS as data fun fac n = if n = @ then 1 else fac (h-1) * n;

o  Simply typed

fun main ()
let
val arg = List.hd (CommandLine.arguments())
val n = Option.valof (Int.fromString arg)
in
print_int (fac n) ; print "\n"

end
handle _ =>
TextIO.print_err ("usage: " A CommandLine.name() A " <n>\n");
main ();
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Introduction

About PureCake

Lazily evaluated
A bit more complicated

Radboud University ?%

numbers :: [Integer]

numbers =

let num n =n : num (n + 1)

in num @
factA :: Integer -> Integer -> Integer
factA a n =

if n < 2 then a
else factA (a * n) (n - 1)

factorials :: [Integer]
factorials = map (factA 1) numbers

app :: (a -> I0 h) -> [a] -> I0 ()
app f 1 = case 1 of

[T -> return ()

h:t ->do fh;app ft

main :: IO ()
main = do
argl <- read_argl
-- fromString == @ on malformed input
let i = fromString argil
facts = take i factorials
app (\1 -> print $ toString i) facts
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Introduction

About this presentation
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About this presentation

e These papers are about a lot of stuff
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Introduction

About this presentation

e These papers are about a lot of stuff
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Introduction

About this presentation

e These papers are about a lot of stuff
o CakeML and PureCake are big projects
o Alot of compiler techniques are used to get to where
we are
e |like reading about compilers a lot...
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SILICATE CHEMISTRY 1S SECOND
Introduction NATURE TO US GEOCHEMISTS, 50
b h o o IT'S EASY TO FORGET THAT THE
AVERAGE PERSON PROBABLY ONLY
About this presentation | s rerao sy owr
AND ONE OR TWO FELDSPARS.

- b lot of stuff [ AND QUARTZ, DFCOURSE.
e These papers are about a lot of stu
o CakeML and PureCake are big projects DFCDURSE

o Alot of compiler techniques are used to get to where

we are
e |like reading about compilers a lot...

EVEN WHEN THEY'RE TRYING TO
COMPENSATE. FOR IT, EXPERTS IN ANYTHING
WILDLY OVERESTIMATE THE AVERAGE
PERSON'S FAMILIARTY WITH THEIR FIELD.
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Introduction

How to make a compiler
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Introduction

How to make a compiler

e Figure out what your starting (source) language does
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Introduction

How to make a compiler

e Figure out what your starting (source) language does
o What makes a program in the starting language correct?
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How to make a compiler
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o What makes a program in the starting language correct?
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Introduction

How to make a compiler

e Figure out what your starting (source) language does
o What makes a program in the starting language correct?
o What outside behaviours does it have?
e Figure out what your target language does
o What does it do different from the source language?
o How are you going to wrangle the behaviour of the source language into the target
language?
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Introduction

How to make a compiler

e Figure out what your starting (source) language does
o What makes a program in the starting language correct?
o What outside behaviours does it have?
e Figure out what your target language does
o What does it do different from the source language?
o How are you going to wrangle the behaviour of the source language into the target
language?
e Recommended: make more compilers
o Define Intermediate Languages
o Putthe compilers for all your intermediate languages together
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Introduction

How to prove a compiler

e Make sure all programs “behave as expected”
o No memory leaks
o “Semantics” between source and target stay the same
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Context: CakeML
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Context: CakeML

CakeML Design Goals

e Approachable to newcomers
o Easily extensible
o Usable for future research/student projects
e Keep the computer in mind
o Computers don't have infinite memory. We can run out!
e Juusst the right number of intermediate languages
o Too many and we have a lot of unnecessary work
o Too little and the compilation steps become too convoluted to prove
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Context: CakeML

1/0 effects

semantics : ¢ ffi_state — program — behaviour set

behaviour = Diverge (io_event stream) | Terminate outcome (io_event list) | Fail

outcome = Success | Resource_limit_hit | FFl_outcome final_event
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The CakeML
compilation pipeline
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Compilation pipeline

General Compiler proofs

We need a correctness proof for every compilation step.

e config -> Arbitrary machine config
e “syntactic_condition” -> no errors in the program

-~ compile config prog = new_prog N\
syntactic_condition prog A
Fail ¢ semantics, ffi prog =
semanticsg ffi new_prog = semantics, ffi prog

Radboud University § %

4
B

eV

Onie <

|32



Compilation pipeline

General Compiler proofs

The program may run out of memory:

semanticsg ffi new_prog C extend_with_resource_limit (semantics, ffi prog)

extend_with_resource_limit behaviours =
behaviours U
{ Terminate Resource_limit_hit io_list | 3¢ I. Terminate t | € behaviours N io_list <1 } U
{ Terminate Resource_limit_hit io_list | 3Il. Diverge Il € behaviours N fromList io_list <o Il }
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Compilation Pipeline

Parsing to an AST

e Using a Parsing Expression Grammar
o Order sensitive
o Non-terminals have a rank based on the input they consume
o Ranks ensure that the parser consume input

e Type inference eXp =
o Uses “triangular substitution” Var num
o No let-polymorphism | If exp exp exp

e Removing syntactic language features

Let (exp list) ex
o No modules, ADTs, incomplete pattern matches, | (exp ) exp

) | Raise exp
ames . | Handle exp exp
e Result: A fully typed, nameless, simple | Tick exp

programming language | Call num (num option) (exp list)

| Op op (exp list)
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V =
Number int

Compilation pipeline | Word64 (64 word)
| Block num (v 1ist)
CLOSLa ng | ByteVector (8 word list)
| RefPtr num

| Closure (num option) (v list) (v list) num exp

e Functions -> Closures | Recclosure (num option) (v 1list) (v1list) ((num X exp)list)num

e Used for lambda lifting exp =
e Closures: \/5 i
o (Optional) location of the closure | If exp exp ex
o Evaluation environment (values for free variables ‘Var’ in I , P
the environment) | Let (exp List) exp
o  Arguments already passed to the closure | Raise exp
o Number of arguments the closure still needs | Handle exp exp
o The closure body | Tick exp
e Recursive closures | Call num (num option) (exp list)
o Same as closures, except this time a list of needed | Op op (exp list)

arguments and function bodies
o Finally, a list index indicating where to start evaluation
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Compilation Pipeline

The ByteVectorLangauge (BVL)

v =
e Noclosures! | w‘or:db;; (1611: word)
e Type checking happens here | Bloek i (¢ 14a€)
® ‘Closure’-> Bjock closure_tag | CodePtr num
([CodePtr ptr; Number arg_count| 4 free_var_vals) | RefPtr nun
* ‘RecClosure’ -> Bjock closure_tag

[CodePtr ptr; Number arg_count; RefPtr ref _ptr] axp =

Var num

| If exp exp exp

| Let (exp list) exp

| Raise exp

| Handle exp exp

| Tick exp

| Call num (num option) (exp list)
| Op op (exp list)
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evaluate ([],env,s) = (Rval [],5)
evaluate (x:y:xs.env,s) =
case evaluate ([x],env,s) of
(Rvalvy,sy) =
(case evaluate (y::xs,env,s; ) of
(Rval vs,s2) = (Rval (v 4 vs),52)
| (Rerre,s2) == (Rerre,s2))
| (Rerrvyg,s1) = (Rerrvyg,s;)

evaluate ([Var n],env,s) =
if n < len env then (Rval [nth n env],s)

else (Rerr (Rabort Rtype_error),s)

evaluate ([Let xsx],env,s) =

case evaluate (xs,env,s) of
(Rvalvs,s;) = evaluate ([x],vs 4 env,s|)

| (Rerre,s;) = (Rerre,s))

evaluate ([Op op xs],env,s) =
case evaluate (xs,env,s) of
(Rvalvs,sy) =
(case do_app op (rev vs) s of
Rval (v,s2) = (Rval [v],s2)
| Rerr err = (Rerr err,s;))
| (Rerrvg,s1) = (Rerrvg,s;)
evaluate ([Raise x|,env,s) =
case evaluate ([x],env,s) of
(Rvalvs,s;) = (Rerr (Rraise (hd vs)),s;)
| (Rerre,s;) = (Rerre,s))

evaluate ([Handle x| x2],env,s) =
case evaluate ([x{],env,s) of
(Rvalv,s;) = (Rval v,s1)
| (Rerr (Rraise v),s1) = evaluate ([x3],v::env,sy)
| (Rerr (Rabort e¢),s;) = (Rerr (Rabort e),s)

evaluate ([Call ticks dest xs],env,s) =
case evaluate (xs,env,s) of
(Rval vs,s1) =
(case find_code dest vs s;.code of
None = (Rerr (Rabort Rtype_error),s;)
| Some (args,exp’) =
if 51.clock < ticks + 1 then

(Rerr (Rabort Rtimeout_error),s; with clock := 0)

else

evaluate ([exp'] ,args,dec_clock (ticks + 1) 51))

| (Rerr vg,s1) = (Rerrvg,s;)

do_app (Const i) [| s = Rval (Numberi,s)

do_app (Cons tag) xs s = Rval (Block rag xs,s)
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Compilation Pipeline

DATAlang

prog =
Skip
e Turning BVL into an imperative language | Move num num
e Semi-manual GC with ‘MakeSpace’ | Call ((num x num_set) option) (num option)
e ‘num'’s are variables (num 1list) ((num X prog) option)
e Used for optimizations in memory | Assign num op (num list) (num_set option)
allocations | Seq prog prog
| If num prog prog
| MakeSpace num num_set
| Raise num
| Return num
| Tick
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Compilation Pipeline

DATALang

Explicit call stack
More direct error handling
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@ state = ( =

locals : v num_map; Number int

stack : frame list; | Word64 (64 word)
global : num option; | Block num (v 1ist)
handler : num; | CodePtr num

refs : num — v ref; | RefPtr num

clock : num;

code : (num x prog)num_map;

ffi : @ £fi_state;

space : num

)

frame = Env (v num_map) | Exc (v num_map) num

o ref = ValueArray (o list) | ByteArray bool (8 word list)
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Intermezzo: CakeML
Evaluation
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Intermezzo

Explaining Evaluation using ANF

e (Sabry & Feleissen, 1992)
e Implicit in the BVL step
e ANF separates nested function calls into ‘let’ bindings TODO FIX THIS

Original ANF

EXP ::= A VAR . EXP EXP ::= VAL

| EXP EXP | let VAR = VAL in EXP

| VAR | let VAR = VAL VAL in EXP

| CONST

| let VAR = EXP in EXP VAL ::= VAR

| CONST
CONST ::=f | g | h | A VAR . EXP
CONST ::=f | g | h
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Intermezzo

Explaining Evaluation using ANF

e Some more practical grammars

%% Normal expressions
A var . EXP EXP ::

EXP ::

CONST :

EXP(EXP, ...)

VAR

CONST

EXP + EXP | EXP - EXP
EXP * EXP | EXP / EXP
let VAR = EXP in EXP

if EXP then EXP else EXP

=011 2...
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%% ANF grammar

VAL

let VAR = VAL in EXP

let VAR = VAL + VAL in EXP
let VAR = VAL - VAL in EXP
let VAR = VAL * VAL in EXP
let VAR = VAL / VAL in EXP
let VAR = VAL(VAL, ...)

if VAL then EXP else EXP

A VAR . EXP

CONST

VAR

| 42



Intermezzo

Explaining Evaluation using ANF

def fac n = if n == 0 then 1 else fac(h - 1) * n

def fac n =
let b =n==0 1in

if b then 1 else (let n' =n -1 in
let acc = fac (n') in
n * acc)
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PureCake
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Purecake!

About PureCake

e Looks like Haskell
e Works* like Haskell
o Has lazy evaluation
o And substitution semantics
e Formalizes some of the things CakeML is using
e Compiles to CakeML
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Purecake!

About PureCake

e Looks like Haskell
o Works* like Haskell
o Has lazy evaluation
o And substitution semantics
e Formalizes some of the things CakeML is using

éé =
var x
op = op| cen |
| cons cname A%y . TE
| tuple ce - ce,
| prim primop let x = ce; in cey
| monadic mop letrec x, = ce, in ce
seq ce; ce;

| case x = ceof cname,[ X, m | — cen,

Radboud University § %}

var x

oplen]

Ax. e

€1 - e

letx =e; in e
letrecx, = ¢, in e
s€q e e;

if ethen e, else e,
eq; cname arity e
proj, cname e
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Purecake!

About PureCake

exp_of (case x = ceof rown) " letx = exp_of ce in expand,. [ Tow, |

expand,. [cname|y,] — cé’, Tow,, | i (eq> cname n(var x)) then

let y, = proj, cname (var x) in (exp_of ce’)

expand, [ ] L fail else expand . [ Fowy, |
€=
e = | varx
var x oplen]
op| cey | Ax. e
| cons cname Ax, . ce e; -
| tuple ce- ce, letx =¢; in e,
| prim primop let x = ce; in cey letrecx, = e, in e
| monadic mop letrec X, = ce, in ce seq e ey
seq ce; cep if ethen e, else e,
| case x = ceof cname,[ X, m | — cen, eq, cname arity e
proj, cname e
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PureCake: Evaluation
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Purecake evaluation

1/0 Effects (Interaction trees)

e Unlike CakeML, we want to model all possible interactions with the outside world
o We can use Interaction Trees (Li-yao Xia et al. 2019)

e Co-inductive datatype that can represent all kinds of semantics
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Purecake evaluation

1/0 Effects (Interaction trees)

e Unlike CakeML, we want to model all possible interactions with the outside world
o We can use Interaction Trees (Li-yao Xia et al. 2019)

e Co-inductive datatype that can represent all kinds of semantics

itree ER ::= Ret (r : R) | Tau (¢ : itree ER) | Vis (A : Type) (e : EA) (k: A — itree ER)
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Purecake evaluation

1/0 Effects (Interaction trees)

e Unlike CakeML, we want to model all possible interactions with the outside world
o We can use Interaction Trees (Li-yao Xia et al. 2019)

e Co-inductive datatype that can represent all kinds of semantics

itree ER ::= Ret (r : R) | Tau (¢ : itree ER) | Vis (A : Type) (e : EA) (k: A — itree ER)

itree EAR ::=Ret (r:R) | Div|Vis(e: E) (k: A — itree EAR)
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Explained questions

Continuations
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Explained questions

Continuations

All programs have a past, a present and a future
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Explained questions

Continuations

All programs have a past, a present and a future
e The past:
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Explained questions

Continuations

All programs have a past, a present and a future

e The past:
o Variables
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Explained questions

Continuations

All programs have a past, a present and a future
e The past:
o Variables
o Assigned memory
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Explained questions

Continuations

All programs have a past, a present and a future
e The past:
o Variables
o Assigned memory
e The present
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Explained questions

Continuations

All programs have a past, a present and a future
e The past:
o Variables
o Assigned memory
e The present
o The expression we're currently evaluating
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Explained questions

Continuations

All programs have a past, a present and a future
e The past:
o Variables
o Assigned memory
e The present
o The expression we're currently evaluating
o The instruction we're currently running
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Explained questions

Continuations

All programs have a past, a present and a future
e The past:
o Variables
o Assigned memory
e The present
o The expression we're currently evaluating
o The instruction we're currently running
e The future
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Explained questions

Continuations

All programs have a past, a present and a future
e The past:
o Variables
o Assigned memory
e The present
o The expression we're currently evaluating
o The instruction we're currently running
e The future
o Return pointers etc.
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Explained questions

Continuations

All programs have a past, a present and a future
e The past:
o Variables
o Assigned memory
e The present
o The expression we're currently evaluating
o The instruction we're currently running
e The future
o Return pointers etc.
o  Continuations!
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Explained questions

Continuations

All programs have a past, a present and a future
e The past:
o Variables
o Assigned memory
e The present
o The expression we're currently evaluating
o The instruction we're currently running
e The future
o Return pointers etc.
o Continuations!
e Continuations are modeled as a function, with the current expression result as input,
and the program result as output
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Purecake evaluation

1/0

Effects (Interaction trees)

itree EAR ::=Ret (r : R) | Div|Vis (e: E) (k: A — itree EAR)

wh

| constructor cname| e, | Ee= R
| tuple [ e, ] | fhi (ch, 5) | termmatlon
| monadic mop| e, | A= | error
| lambda x e | oks | fail
| literal lit | failg di -
_ | divergeg
| error | divergey
| diverge
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Purecake evaluation

1/0 Effects (Interaction trees)

(diverge, k, o) = Div (error, k, o) = Ret error
(bind e, e;, k, o) = (eval,, e;, bind e e, :: k, o)
(returne, & o) = Ret termination
(returne;, bind e e, :: x, o)) = (eval,, (e; - ), k, o)
(raise e;, frame:: ...: handle o e, : k, o) = (leval,, (e - €), Kk, o)
eval,, e = literal (locl) = (lene, x, o)) = (return (int |o(])|), x, o)
(action (msg chs), k, o) = Vis (ch,s) (Aa. ...)
where bind e; e, &' monadic bind| e, e, |, similarly for other monadic operations above.
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Purecake evaluation

Demand analysis

4 main :: I0 ()

5 main = do

6 argl <- read_argl

7 let n = fromString argl

8 print $ "Finding longest Collatz sequence less than " ++ toString n

e By default, all variables are stored in 9 Tlet res = maxCollatzSequence n
10 print $ "Number with longest sequence: " ++ toString (fst res)

heap memory 11  print $ "Length of sequence: " ++ toString (snd res)
e Goal: Make as much as possible eager e

without affecting semantics 14 maxCollatzSequence :: Integer -> (Integer, Integer)

. o ¥ 15 maxCollatzSequence n = maxIndex (take n collatzSequences)
e Special case: 'seq 16
° . 17 collatzSequences :: [Integer]
o Demand anal SIS says nOthln abOUt 18 collatzSequences = map collatzSequence (numbers Q)
valuation order 19
evaluation o de 20 collatzSequence :: Integer -> Integer

21 collatzSequence n =
22  let segAux acc n =

23 if n < 1 then (0-1)

24 else if n == 1 then acc

25 else seqAux (acc + 1) (collatz n)
26 in seqAux 0 n

27

28 collatz :: Integer -> Integer
29 collatz n = if n "mod’ 2 == 0@ then n "div’ 2 else 3 * n + 1
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Purecake evaluation

Demand analysis

C + (var x) demands x CFedemandsx x # y

CF (lety =e; in e3) demands x
C + e; demands x

C + e, demands y C F e; demands x
CF (lety =e; in e;) demands x C F (seqe; e2) demands x
C F e, demands x [let x = L in seq fail (var x) | = Ret error
C + (seqe; e;) demands x [let x = L in seq (var x) (seq fail (var x)) | = Div
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Purecake Evaluation

Demand Analysis
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Purecake Evaluation

Demand Analysis

Things get tricky when analysing functions & function calls though
e Three cases:
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Purecake Evaluation

Demand Analysis

Things get tricky when analysing functions & function calls though
e Three cases:
o Applied expressions need to be demanded
e demandss (n, m) = Vx e,. endemands x = (e- em) demands x
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Purecake Evaluation

Demand Analysis

Things get tricky when analysing functions & function calls though
e Three cases:
o Applied expressions need to be demanded
e demandss (n, m) = Vx e,. endemands x = (e- em) demands x

o Function arguments need to be demanded when they are applied
def e )
edemands,, (x,n) = Ve,. (e- €,) demands x
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Purecake Evaluation

Demand Analysis

Things get tricky when analysing functions & function calls though
e Three cases:
o Applied expressions need to be demanded
e demandss (n, m) = Vx e,. endemands x = (e- em) demands x

o Function arguments need to be demanded when they are applied
def e )
edemands,, (x,n) = Ve,. (e- €,) demands x

o The recursive case
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Purecake Evaluation

Demand Analysis

e Things get tricky when analysing functions & function calls though
e Three cases:

o Applied expressions need to be demanded

e demandss (n, m) = Vx e,. endemands x = (e- em) demands x

o Function arguments need to be demanded when they are applied
def e )
edemands,, (x,n) = Ve,. (e- €,) demands x

o The recursive case
(v f dsxs € d. (f', ds, Axs. €) € binds A d € ds = (reformulate binds ¢') demands a')
= letrec {f= er | (f, ds, ef) € bina’s} e =
letrec {f= mark_demanded ds ef | (f, ds, ef) € binds} e
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Compiling PureCake
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Purecake compilation

Parsing

e We have indents now, so no normal CFG
e Instead, we add an indentation indicators to our CFGs
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Purecake compilation

Parsing

e We have indents now, so no normal CFG
e Instead, we add an indentation indicators to our CFGs

Decl| — |ldent|™ 27~ Ty~
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Purecake compilation

Parsing

e We have indents now, so no normal CFG
e Instead, we add an indentation indicators to our CFGs

Decl| — |ldent|™ 27~ Ty~

e We can now calculate the “Indentation sets of non-terminals
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Purecake compilation

Parsing

e We have indents now, so no normal CFG
e Instead, we add an indentation indicators to our CFGs

Decl| — |ldent|™ 27~ Ty~

e We can now calculate the “Indentation sets of non-terminals
o Either a closed set of possible indentations (i to j no. of indents)

Radboud University § %

4
B

eV

Onie <

| 78



Purecake compilation

Parsing

e We have indents now, so no normal CFG
e Instead, we add an indentation indicators to our CFGs

Decl| — |ldent|™ 27~ Ty~

e We can now calculate the “Indentation sets of non-terminals
o Either a closed set of possible indentations (i to j no. of indents)
o Alower-bounded set (i or more no. of indents)
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Purecake compilation

Parsing

e We have indents now, so no normal CFG
e Instead, we add an indentation indicators to our CFGs

Decl| — |ldent|™ 27~ Ty~

e We can now calculate the “Indentation sets of non-terminals
o Either a closed set of possible indentations (i to j no. of indents)
o Alower-bounded set (i or more no. of indents)
o Any number of indents
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Purecake compilation

Parsing

e We have indents now, so no normal CFG
e Instead, we add an indentation indicators to our CFGs

Decl| — |ldent|™ 27~ Ty~

e We can now calculate the “Indentation sets of non-terminals

(@)

O
O
O

Either a closed set of possible indentations (i to j no. of indents)
A lower-bounded set (i or more no. of indents)

Any number of indents

Nowhere (this would be a parsing error)
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Purecake compilation

Parsing

e We have indents now, so no normal CFG
e Instead, we add an indentation indicators to our CFGs

Decl| — |ldent|™ 27~ Ty~

e We can now calculate the “Indentation sets of non-terminals
o Either a closed set of possible indentations (i to j no. of indents)
o Alower-bounded set (i or more no. of indents)
o Any number of indents
o Nowhere (this would be a parsing error)
e Resultis the program AST, represented as a giant letrec-statement

Radboud University ?%

4
B

eV

Onie <

| 82



Purecake compilation

Type inference

e C(Classical Hindley-Milner algorithms give bad error messages
e We'll use a constraint-based system instead

F'rcecey:mm a, €T

Ix:Va,.tyFcep: T ToPVAR
L 2 HMLer Mrvarx:a = [x:a]; @

I'tletx = ce in ce; : 1
a, Mrce:7" = A; C

TorLAaM
Mt (Ax,.ce):(a, = 1) >A\x; CUU,{r=a,|x,:7 € A}

Mbrcep:11 = A1 ; Ci Mbrcey:mm = Ay G

- ToPLET
Mr(letx=cepincey) : 9 =2 A  UA \x; GUGU{rtyn|x:7 € Ay}
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Purecake Compilation

Type Inference
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Purecake Compilation

Type Inference

e We now have constraints
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Purecake Compilation

Type Inference

e We now have constraints
e Constraint solving is “straight-forward” and “omitted”
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Purecake Compilation

Demand Analysis
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Purecake Compilation

Demand Analysis

e We've already done this
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Purecake Compilation

Demand Analysis

e We've already done this
e Result is adding ‘seq’ to expressions we know we can demand without affecting
semantics
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Purecake compilation

Backend: The ILs

e Instead of proving semantics preservation with functions, we use relations between
different ILs
o More flexible than functions
o Means we don't need to keep track of compiler invariants between all our functions
e We can then reconstruct a function out of the relations we've made
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Purecake compilation

THUNKLang

e Very similar to the source language

e Eagerly evaluated

e 2 new constructs
o delay: turns an expression into a thunk
o force: evaluates e to a thunk, then forces

evaluation of the thunk
e Note: at this point a thunk re-evaluates
every time it is forced!

delay :: a -> (() -> a)
delay e = \() -> e

force :: (() -> a) -> a
force e = e ()

O o0 ~JOyUl &
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Purecake compilation

THUNKLang

thunk 5/ thunk 5/
o G ° " THKAPP
THKVAR thunk ,’ !
var x thunk force (var x) e1 - eg I e - delay e,
thunk 5/ thunk 5/
e s el ey g el
. — ———— THKLET
letx =e; in e x letx = delay e} in ¢,
ep hunk el ey Uk el fresh ¢ freevars e,
— THKSEQ

seq e e ;

Radboud University %
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Purecake compilation

THUNKLang

e Note the simplicity in compilation thanks to demand analysis
o However, this translation introduces a lot of ‘delay(force(e))’ constructs
o Define a relation unthunk and prove ‘mk_delay’ satisfies this relation

def |varx if ce = force (var x),
mk_delay ce = .
delay ce otherwise.
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Purecake compilation

EnvLang

e We use environments, instead of substituting functions with their definitions
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Purecake compilation

StatelLang

e Compile ‘delay’ and ‘force’ primitives into actual expressions
o ‘delay computations are stored in a mutable array
o ‘force’ primitives are possible updates to the mutable array (if the value inside of it hasn't
been forced yet)
e Monadic operations are also compiled into thunk-style functions
o “Stateful operations” (Exceptions, mutable array handling, 1/0 etc.) are turned into
special primitives
o  Other operations are turned into computations that accept a unit input to perform the
actual operation.
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Purecake compilation

StatelLang

| return ce| Lletx = |ce|] in A_. varx

| raise ce| L let x = | ce| in A_. raisepy, (var x)

|bind ce; cey | = ). | cey] - (| ce;] - unit) - unit

|delay ce| £ alloc [false, A_. | ce]]

| force ce] ' let x = | ce] : x = x[0] ; x; = x[1] in
if var xy then var x; else
let w = (var xy) - unit in

x[0] :=true ; x[1] := var w; var w

Radboud University %

4

B

% s
Onie <

| 96



Purecake compilation

StatelLang
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Purecake compilation

StatelLang

e We mostly need to prove that our operations on thunks are correct
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Purecake compilation

StatelLang

e We mostly need to prove that our operations on thunks are correct
o We need to prove that semantics preserve ‘EnvLang -> StateLang’ AND ‘StateLang ->
Envlang’
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Purecake compilation

StatelLang

e We mostly need to prove that our operations on thunks are correct
o We need to prove that semantics preserve ‘EnvLang -> StateLang’ AND ‘StateLang ->
Envlang’

e Abit of cleanup:
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Purecake compilation

StatelLang

e We mostly need to prove that our operations on thunks are correct
o We need to prove that semantics preserve ‘EnvLang -> StateLang’ AND ‘StateLang ->
Envlang’
e Abit of cleanup:
o Remove cases of ‘(A().ce)() and replace them with ‘ce’
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Purecake compilation

StatelLang

e We mostly need to prove that our operations on thunks are correct
o We need to prove that semantics preserve ‘EnvLang -> StateLang’ AND ‘StateLang ->
Envlang’
e Abit of cleanup:
o Remove cases of ‘(A().ce)() and replace them with ‘ce’
e Semantics themselves are implemented by a CESK machine

Radboud University ?% | 102

B

3

A2
A



Purecake compilation

StatelLang

e We mostly need to prove that our operations on thunks are correct
o We need to prove that semantics preserve ‘EnvLang -> StateLang’ AND ‘StateLang ->
Envlang’
e Abit of cleanup:
o Remove cases of ‘(A().ce)() and replace them with ‘ce’
e Semantics themselves are implemented by a CESK machine
o Relatively straight-forward
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Purecake compilation

StatelLang

e We mostly need to prove that our operations on thunks are correct
o We need to prove that semantics preserve ‘EnvLang -> StateLang’ AND ‘StateLang ->
Envlang’
e Abit of cleanup:
o Remove cases of ‘(A().ce)() and replace them with ‘ce’
e Semantics themselves are implemented by a CESK machine
o Relatively straight-forward
o  Stateful primitives are implemented by the machine
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Purecake compilation

From ITrees to CakeML
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Purecake compilation

From ITrees to CakeML

e We need to show that PureCake semantics are equivalent to CakeML semantics
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Purecake compilation

From ITrees to CakeML

e We need to show that PureCake semantics are equivalent to CakeML semantics
e Adifferent CakeML project already implemented a CESK machine we can use
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Purecake compilation

From ITrees to CakeML

e We need to show that PureCake semantics are equivalent to CakeML semantics
e Adifferent CakeML project already implemented a CESK machine we can use
e Turn our interaction trees to CakeML semantics
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Purecake compilation

From ITrees to CakeML

e We need to show that PureCake semantics are equivalent to CakeML semantics
e Adifferent CakeML project already implemented a CESK machine we can use
e Turn our interaction trees to CakeML semantics

o CakeML uses “oracle semantics”
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Purecake compilation

From ITrees to CakeML

e We need to show that PureCake semantics are equivalent to CakeML semantics
e Adifferent CakeML project already implemented a CESK machine we can use
e Turn our interaction trees to CakeML semantics

o CakeML uses “oracle semantics”

o Remember: [Trees simulate all possible outside-world semantics
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Purecake compilation

From ITrees to CakeML

e We need to show that PureCake semantics are equivalent to CakeML semantics
e Adifferent CakeML project already implemented a CESK machine we can use
e Turn our interaction trees to CakeML semantics
o CakeML uses “oracle semantics”
o Remember: [Trees simulate all possible outside-world semantics
o We need to carve out the branch from our ITree that corresponds to the CakeML
semantics
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Purecake compilation

From ITrees to CakeML

e We need to show that PureCake semantics are equivalent to CakeML semantics
e Adifferent CakeML project already implemented a CESK machine we can use
e Turn our interaction trees to CakeML semantics
o CakeML uses “oracle semantics”
o Remember: [Trees simulate all possible outside-world semantics
o We need to carve out the branch from our ITree that corresponds to the CakeML
semantics

Ale) =1 A k(r)~5 tr = Visek 5 (e,r) i tr
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Purecake compilation

From ITrees to CakeML

e We need to show that PureCake semantics are equivalent to CakeML semantics
e Adifferent CakeML project already implemented a CESK machine we can use
e Turn our interaction trees to CakeML semantics
o CakeML uses “oracle semantics”
o Remember: [Trees simulate all possible outside-world semantics
o We need to carve out the branch from our ITree that corresponds to the CakeML
semantics

Ale) =1 A k(r)~5 tr = Visek 5 (e,r) i tr

F target_configs_ok config machine A safe_itree [ prog]. A
compile, config prog = Some code A code_in_memory config code machine
= [ machine]m prunes [ prog |-
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onclusion
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The End!

The theorems we get from
PureCake

- compiler str = Some ast. = + frontend str = Some (ce, ns) =
dce ns. frontend str = Some (ce, ns) A safe_itree [ exp_of ce [l ure A
safe_itree [ exp_of ce[pure A Jast.. compiler str = Some ast. A
itree_rel [ exp_of cepure [asts |- itree_rel [exp_of ce Jpure [asts].

- compiler str = Some ast= A compile. config ast= = Some code A
target_configs_ok config machine A code_in_memory config code machine
= Jce ns. frontend str = Some (ce, ns) A [ machine|y prunes [ exp_of ce]
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The End!

The theorems we get from
PureCake

e The compiler compiles correct PureCake into correct CakeML

- compiler str = Some ast. = + frontend str = Some (ce, ns) =
dce ns. frontend str = Some (ce, ns) A safe_itree [ exp_of ce [l ure A
safe_itree [ exp_of ce[pure A Jast.. compiler str = Some ast. A
itree_rel [ exp_of cepure [asts |- itree_rel [exp_of ce Jpure [asts].

- compiler str = Some ast= A compile. config ast= = Some code A
target_configs_ok config machine A code_in_memory config code machine
= Jce ns. frontend str = Some (ce, ns) A [ machine|y prunes [ exp_of ce]
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The End!

The theorems we get from
PureCake

e The compiler compiles correct PureCake into correct CakeML
o That means that if the source code parses and type-checks, it compiles correctly

- compiler str = Some ast. = + frontend str = Some (ce, ns) =
dce ns. frontend str = Some (ce, ns) A safe_itree [ exp_of ce [l ure A
safe_itree [ exp_of ce[pure A Jast.. compiler str = Some ast. A
itree_rel [ exp_of cepure [asts |- itree_rel [exp_of ce Jpure [asts].

- compiler str = Some ast= A compile. config ast= = Some code A
target_configs_ok config machine A code_in_memory config code machine
= Jce ns. frontend str = Some (ce, ns) A [ machine|y prunes [ exp_of ce]
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The End!

The theorems we get from
PureCake

e The compiler compiles correct PureCake into correct CakeML
o That means that if the source code parses and type-checks, it compiles correctly

e Therefore, it compiles correct PureCake into correct machine code

- compiler str = Some ast. = + frontend str = Some (ce, ns) =
dce ns. frontend str = Some (ce, ns) A safe_itree [ exp_of ce [l ure A
safe_itree [ exp_of ce[pure A Jast.. compiler str = Some ast. A
itree_rel [ exp_of cepure [asts |- itree_rel [exp_of ce Jpure [asts].

- compiler str = Some ast= A compile. config ast= = Some code A
target_configs_ok config machine A code_in_memory config code machine
= Jce ns. frontend str = Some (ce, ns) A [ machine|y prunes [ exp_of ce]
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Values

abstract values incl. closures and ref pointers

abstract values incl.
ref and code pointers

machine words and code labels

Languages

Compiler transformations

)
Parza concrata sy ntax

no modulas
nocons names
D Reduce declarations to

nodeclarations

:) Infar types, axit if fail
D Eliminate modules

Replace constructor
namas with numbers

axps; introduca global vars
:) Maka pattams exhaustive

Maove nullary constructor
:> patterns upwards

Compile nern matches
and Lets

no pat. match :D "0 neste

BvVL:

without
closures

functional
language shrink

:) Fuse function callsiapps
into multi-arg calls/apps

ClosLang: Track where closure values
last language flow; annotate program
with closures :D Introduce C-style fast
(has multi-am calls wharever passible

closures)

::) Remave dead code
:) Prapare for closum conv.
::) Parfarm closure comv.
::) Inline small functions
Fold constants and
ink Lats

:) Splitover-sized functions
inta many small functions

Compile global vars intoa
~ ::D d ically resized aray

anly 1 global, - .
' handle in call |:) Optimisa Let-axprassions

WaordLang:
imperative

mamary and

language with
machine words, ::) Farce two-reg code (if req )

D Switch to imparative styla
. :) Reduce callersaved vars

::) Combine adjacent
mamary allocations

ata rapr.
:‘_) Simplify program
D Salkct targat instructions
:) Parform SSA-like ranaming

a GC primitive | . Remave dead cade

> Allocale register names

StackLang:

< > C isa stack

::) Implament GG primitive

imparativa Turn stack access into
language Mmamory accasas
with array-like K
stack and :) Rename registars to match
optional GC arch

High-level comments

Parsing and type infarance

ara assantially unchanged

from the previous version.
The initial phases of the
compilar
succassivaly mmaove
features from the input
language. Thesa phases
ramove madules,
declarations, pattem
matching. All names ara
turned into represantations
based onthe natural
numbers, 8.9. de Brujin
indicas are usad for local
variables and constructor
names bacome numbars.

ClosLang is a language for
optimiging function calls
fore closure conversian.
These phasas fuse all
single-argumeant function
applications into true multi-
argument applications, and
atfampt to turn as many
function applications as
possible into fast C-like
calk to known functions.

The languages aftar closum
comerstion but bafore data
bacames concrate maching
wonds, Le. languages from
BVL to DataLang, are
particularly simple both to
write optimisations for

and for verification prook.
The compiler parforms
many simple optimisations
inthesa laguages, including
function inlining, constant
foking and maming of
nearby mamary allocations.

#
O na of the most dalicate
compiler phasas. This
inroduces the bit-lavel
data represantation, GC &
bignum implemantation.

Tha rest of the compiler is
similar 1o the backend ofa
sumple oonamler fora C-like
uage. rcompuler
|mp emeants fast Iongﬂ
inarder to support ML-style
axecptions. The compiler
differs from a C compiler
by having to interact with
and implment the GC.

'Il'he GC i introducad as a
anguage primitive an
n'ﬁulanon into WordLang.
rdown in StackLang,
the GC is implemantad as a
halpar function that is

o> Flaten cade
:) Dalek no-ops (Tick, Skip)
— Encode programas

d to the currntly
compiled program.

T The final stage tums a

Radboud University ?%’e

Language

L Concrete syntax

-

Purelawnc (§ 4.2)
ce from fig. 2
pure call-by-name
(subst. semantics)
front end (§ 4)

backend (55

TuuwkLanG (§ 5.2)
pure call-by-value
(subst. semantics)

EnvLawa (§ 5.3)
pure call-by-value
{erv. semantics)

STaTELANG (§ 5.4)
impure call-by-value
{env. semantics)

| CakeML source J

e

AN AVAVENDY,

AV ‘u’ ! ‘\J' ‘v

ARV

Compiler implementation

lexing, parsing, desugaring
split letrees; simplify

type inference

simplify

demand analysis

annolates with seqs

translate into call-by-value;
introduce delay/force;
avoid delay (force (var_))
lift A-abstractions out

of lets/letrecs

simplify force expressions
reformulate to simplify
compilation to STATELANG

compile delay/force and
10 monad to stateful ops

push _ - unit inwards -

make every d-abstraction
bind a variable

translate to CakeML;
attach helper functions

The End!

onclusion

Comments on verification

can reject inpul; unverified
preserves = (§ 34)

sound: rejects ill-typed programs
preserves = (§ 34)

preserves = (§ 4.4) and well-typing

proof split inte five relations;
implementation stays within their compaosition

implementation stays within fransitive closure
of semantics-preserving syntactic relations

proof composed of three relations:
1. implement 10 monad statefully
2. implement delay/force statefully
3. tidy the result

implementation stays within fransitive closure
of semantics-preserving syntactic relation
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QandA
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Expected Questions

“Why no proofs”

e The proofs are very big
o CakeML supposedly takes 22 hours and 16GB of ram to compile/bootstrap from source

e The proofs are more work than ideas
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Expected questions

“What is Co-inductivity?”

e Dual to inductive types
o Are generated using co-recursive functions
o Can be potentially infinite
o Cannot just be consumed by an inductive function
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Expected Questions

Demand Analysis (vs Haskell)

20 collatzSequence :: Integer -> Integer
21 collatzSequence n =
22 let seqAux acc n =

23 if n < 1 then (0-1)
24 else if n == 1 then acc
25 else segAux (acc + 1) (collatz n)

26 in seqAux 0 n
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Expected Questions

Demand Analysis (vs Haskell)

20 collatzSequence :: Integer -> Integer
21 collatzSequence n =
22 let seqAux acc n =

23 if n < 1 then (0-1)
24 else if n == 1 then acc
25 else segAux (acc + 1) (collatz n)

26 in seqAux 0 n
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Expected Questions

Demand Analysis (vs Haskell)

20 collatzSequence :: Integer -> Integer
21 collatzSequence n =
22 let seqAux acc n =

23 if n < 1 then (0-1)
24 else if n == 1 then acc
25 else segAux (acc + 1) (collatz n)

26 in seqAux 0 n
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Expected Questions

Demand Analysis (vs Haskell)
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Expected Questions

Weak-Head Normal Form

Radboud University i%:ﬁ [ 133



Expected Questions

Weak-Head Normal Form

Evaluate the expression until we're stuck at an incomplete lambda or an uninterpretable
function
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e Normal Form: We cannot further evaluate the expression
o We've evaluated every lambda body as far as we can
o  Basically symbolic evaluation
e Head Normal Form: We cannot find any lambdas to fill
o We've evaluated any top level function bodies
o (We don't really deal with HNF anymore)
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o We've evaluated every lambda body as far as we can
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e Head Normal Form: We cannot find any lambdas to fill
o We've evaluated any top level function bodies
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Expected Questions

Weak-Head Normal Form

Evaluate the expression until we're stuck at an incomplete lambda or an uninterpretable
function

e Normal Form: We cannot further evaluate the expression
o We've evaluated every lambda body as far as we can
o  Basically symbolic evaluation
e Head Normal Form: We cannot find any lambdas to fill
o We've evaluated any top level function bodies
o (We don't really deal with HNF anymore)
e Weak Head Normal Form: We can’t do trivial substitutions anymore
o Any partially applied function will be substituted with its definition any the arguments
that were applied
o We don't do anything else.
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