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● The Verified CakeML Compiler Backend 
○ (https://doi.org/10.1017/S0956796818000229)

● PureCake: A verified compiler for a lazy functional language
○ (https://doi.org/10.1145/3591259)
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● Formally verified compiler for a dialect of Standard ML
● Takes resource constraints into account for it’s proof of correct compilation
● Implemented in HOL4

○ Theorems and proofs as data
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About PureCake
Introduction

● Lazily evaluated
● A bit more complicated
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○ What outside behaviours does it have?

● Figure out what your target language does
○ What does it do different from the source language?
○ How are you going to wrangle the behaviour of the source language into the target 

language?
● Recommended: make more compilers

○ Define Intermediate Languages 
○ Put the compilers for all your intermediate languages together

Introduction



● Make sure all programs “behave as expected”
○ No memory leaks
○ “Semantics” between source and target stay the same

How to prove a compiler
Introduction
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Context: CakeML
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● Approachable to newcomers
○ Easily extensible
○ Usable for future research/student projects

● Keep the computer in mind
○ Computers don’t have infinite memory. We can run out!

● Juusst the right number of intermediate languages
○ Too many and we have a lot of unnecessary work
○ Too little and the compilation steps become too convoluted to prove

CakeML Design Goals
Context: CakeML
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I/O effects
Context: CakeML
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The CakeML 
compilation pipeline
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We need a correctness proof for every compilation step.
● config -> Arbitrary machine config
● “syntactic_condition” -> no errors in the program

General Compiler proofs
Compilation pipeline
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The program may run out of memory:

General Compiler proofs
Compilation pipeline
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● Using a Parsing Expression Grammar
○ Order sensitive
○ Non-terminals have a rank based on the input they consume
○ Ranks ensure that the parser consume input

● Type inference
○ Uses “triangular substitution”
○ No let-polymorphism

● Removing syntactic language features
○ No modules, ADTs, incomplete pattern matches,

names
● Result: A fully typed, nameless, simple

programming language

Parsing to an AST
Compilation Pipeline
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● Functions -> Closures
● Used for lambda lifting
● Closures:

○ (Optional) location of the closure
○ Evaluation environment (values for free variables ‘Var’ in 

the environment)
○ Arguments already passed to the closure
○ Number of arguments the closure still needs
○ The closure body

● Recursive closures
○ Same as closures, except this time a list of needed 

arguments and function bodies
○ Finally, a list index indicating where to start evaluation

CLOSLang
Compilation pipeline
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● No closures!
● Type checking happens here
● ‘Closure’ -> 

● ‘RecClosure’ ->

The ByteVectorLangauge (BVL)
Compilation Pipeline
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● Turning BVL into an imperative language
● Semi-manual GC with ‘MakeSpace’
● ‘num’s are variables
● Used for optimizations in memory 

allocations

DATAlang
Compilation Pipeline
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DATALang
Compilation Pipeline

● Explicit call stack
● More direct error handling



Intermezzo: CakeML 
Evaluation
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● (Sabry & Feleissen, 1992)
● Implicit in the BVL step
● ANF separates nested function calls into ‘let’ bindings TODO FIX THIS

Explaining Evaluation using ANF
Intermezzo
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Explaining Evaluation using ANF
Intermezzo

● Some more practical grammars
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About PureCake
Purecake!

● Looks like Haskell
● Works* like Haskell

○ Has lazy evaluation
○ And substitution semantics

● Formalizes some of the things CakeML is using
● Compiles to CakeML
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I/O Effects (Interaction trees)
Purecake evaluation

● Unlike CakeML, we want to model all possible interactions with the outside world
○ We can use Interaction Trees (Li-yao Xia et al.  2019)

● Co-inductive datatype that can represent all kinds of semantics
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Continuations
Explained questions

All programs have a past, a present and a future
● The past:

○ Variables
○ Assigned memory

● The present
○ The expression we’re currently evaluating
○ The instruction we’re currently running

● The future
○ Return pointers etc.
○ Continuations!

● Continuations are modeled as a function, with the current expression result as input, 
and the program result as output



| 64

I/O Effects (Interaction trees)
Purecake evaluation



| 65

I/O Effects (Interaction trees)
Purecake evaluation



Demand analysis
Purecake evaluation

● By default, all variables are stored in 
heap memory

● Goal: Make as much as possible eager 
without affecting semantics

● Special case: ‘seq’
● Demand analysis says nothing about 

evaluation order
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● We have indents now, so no normal CFG
● Instead, we add an indentation indicators to our CFGs
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● We can now calculate the “Indentation sets of non-terminals
○ Either a closed set of possible indentations (i to j no. of indents)
○ A lower-bounded set (i or more no. of indents)
○ Any number of indents
○ Nowhere (this would be a parsing error)

● Result is the program AST, represented as a giant letrec-statement



Type inference
Purecake compilation

● Classical Hindley-Milner algorithms give bad error messages
● We’ll use a constraint-based system instead
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Type Inference
Purecake Compilation

● We now have constraints
● Constraint solving is “straight-forward” and “omitted”
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Demand Analysis
Purecake Compilation

● We’ve already done this
● Result is adding ‘seq’ to expressions we know we can demand without affecting 

semantics
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Backend: The ILs
Purecake compilation

● Instead of proving semantics preservation with functions, we use relations between 
different ILs
○ More flexible than functions
○ Means we don’t need to keep track of compiler invariants between all our functions

● We can then reconstruct a function out of the relations we’ve made



THUNKLang
Purecake compilation

● Very similar to the source language
● Eagerly evaluated
● 2 new constructs

○ delay: turns an expression into a thunk
○ force: evaluates e to a thunk, then forces 

evaluation of the thunk
● Note: at this point a thunk re-evaluates 

every time it is forced!
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THUNKLang
Purecake compilation

● Note the simplicity in compilation thanks to demand analysis
○ However, this translation introduces a lot of ‘delay(force(e))’ constructs
○ Define a relation unthunk and prove ‘mk_delay’ satisfies this relation



EnvLang
Purecake compilation

● We use environments, instead of substituting functions with their definitions
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StateLang
Purecake compilation

● Compile ‘delay’ and ‘force’ primitives into actual expressions
○ ‘delay’ computations are stored in a mutable array
○ ‘force’ primitives are possible updates to the mutable array (if the value inside of it hasn’t 

been forced yet)
● Monadic operations are also compiled into thunk-style functions

○ “Stateful operations” (Exceptions, mutable array handling, I/O etc.) are turned into 
special primitives

○ Other operations are turned into computations that accept a unit input to perform the 
actual operation.
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StateLang
Purecake compilation

● We mostly need to prove that our operations on thunks are correct
○ We need to prove that semantics preserve ‘EnvLang -> StateLang’ AND ‘StateLang -> 

Envlang’
● A bit of cleanup:

○ Remove cases of ‘(λ().ce)()’ and replace them with ‘ce’
● Semantics themselves are implemented by a CESK machine

○ Relatively straight-forward
○ Stateful primitives are implemented by the machine
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The theorems we get from 
PureCake

The End!

● The compiler compiles correct PureCake into correct CakeML
○ That means that if the source code parses and type-checks, it compiles correctly

● Therefore, it compiles correct PureCake into correct machine code



Conclusion
The End!
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“Why no proofs”
Expected Questions

● The proofs are very big
○ CakeML supposedly takes 22 hours and 16GB of ram to compile/bootstrap from source

● The proofs are more work than ideas



| 122

“What is Co-inductivity?”
Expected questions

● Dual to inductive types
○ Are generated using co-recursive functions
○ Can be potentially infinite
○ Cannot just be consumed by an inductive function



| 123

Demand Analysis (vs Haskell)
Expected Questions



| 124

Demand Analysis (vs Haskell)
Expected Questions



| 125

Demand Analysis (vs Haskell)
Expected Questions



| 126

Demand Analysis (vs Haskell)
Expected Questions



| 127

Demand Analysis (vs Haskell)
Expected Questions



| 128

Demand Analysis (vs Haskell)
Expected Questions



| 129

Demand Analysis (vs Haskell)
Expected Questions



| 130

Demand Analysis (vs Haskell)
Expected Questions



| 131

Demand Analysis (vs Haskell)
Expected Questions



| 132

Demand Analysis (vs Haskell)
Expected Questions



| 133

Weak-Head Normal Form
Expected Questions



| 134

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable 
function



| 135

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable 
function
● Normal Form: We cannot further evaluate the expression



| 136

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable 
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can



| 137

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable 
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can
○ Basically symbolic evaluation



| 138

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable 
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can
○ Basically symbolic evaluation

● Head Normal Form: We cannot find any lambdas to fill



| 139

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable 
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can
○ Basically symbolic evaluation

● Head Normal Form: We cannot find any lambdas to fill
○ We’ve evaluated any top level function bodies



| 140

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable 
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can
○ Basically symbolic evaluation

● Head Normal Form: We cannot find any lambdas to fill
○ We’ve evaluated any top level function bodies
○ (We don’t really deal with HNF anymore)



| 141

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable 
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can
○ Basically symbolic evaluation

● Head Normal Form: We cannot find any lambdas to fill
○ We’ve evaluated any top level function bodies
○ (We don’t really deal with HNF anymore)

● Weak Head Normal Form: We can’t do trivial substitutions anymore



| 142

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable 
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can
○ Basically symbolic evaluation

● Head Normal Form: We cannot find any lambdas to fill
○ We’ve evaluated any top level function bodies
○ (We don’t really deal with HNF anymore)

● Weak Head Normal Form: We can’t do trivial substitutions anymore
○ Any partially applied function will be substituted with its definition any the arguments 

that were applied



| 143

Weak-Head Normal Form
Expected Questions

Evaluate the expression until we’re stuck at an incomplete lambda or an uninterpretable 
function
● Normal Form: We cannot further evaluate the expression

○ We’ve evaluated every lambda body as far as we can
○ Basically symbolic evaluation

● Head Normal Form: We cannot find any lambdas to fill
○ We’ve evaluated any top level function bodies
○ (We don’t really deal with HNF anymore)

● Weak Head Normal Form: We can’t do trivial substitutions anymore
○ Any partially applied function will be substituted with its definition any the arguments 

that were applied
○ We don’t do anything else.
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