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The Papers

First paper:

▶ Automata Learning with an Incomplete Teacher

▶ ECOOP 2023

▶ Mark Moeller, Thomas Wiener, Alaia Solko-Breslin, Caleb
Koch, Nate Foster, Alexandra Silva

Second paper:

▶ Learning Minimal Deterministic Automata from Inexperienced
Teachers

▶ ISoLA 2012

▶ Martin Leucker, Daniel Neider



Introduction L∗ Algorithm L∗
□

Algorithm Alternative Algorithms Conclusion

Automata Learning

▶ Closed box inference of DFAs

▶ Active learning

▶ MAT framework, iMAT framework

▶ L∗, L∗□ algorithms
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Applications of automata learning

Software Verification

▶ Regression testing of
telecommunication systems
(Siemens)

▶ Testing requirements of a
brake-by-wire system (Volvo)

Security

▶ Smartcards, network protocols

Legacy software (ASML)
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MAT Framework

▶ Minimally adequate teacher / oracle

▶ Teacher has a regular language L ⊆ Σ∗

▶ Active learning based on queries
▶ Membership (”yes” / ”no”)
▶ Equality (”correct” / ”counterexample”)

▶ Sufficient to determine correct and minimal DFA

▶ L∗ algorithm
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iMAT framework

▶ In practice, oracle is not perfect
▶ How to validate equivalence queries?

▶ Incomplete minimally adequate teacher

▶ Teacher has sets L+ ⊆ Σ∗ and L− ⊆ Σ∗, with L+ ∩ L− = ∅
▶ New membership query: ”yes” / ”no” / ”don’t care”

▶ L∗□ algorithm

▶ Main subject of the paper
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Observation Tables

Given a language L ⊆ Σ∗, an observation
table is a tuple (S ,E ,T ), where

▶ S ⊆ Σ∗ is a prefix-closed set of
words

▶ E ⊆ Σ∗ is a suffix-closed set of
words

▶ T : (S ∪ S ×Σ)× E → {+,−} is a
map on words

Example with S = {ε, b, a} and E =
{ε, ab, b}

ε ab b

ε - - +
b + + +
a - - -

ba + + +
bb + + +
aa - - -
ab - - -
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Closedness

An observation table (S ,E ,T ) is closed if for every word w ∈ S
and letter a ∈ Σ, we have row(wa) ∈ row(S)

Closed

ε ab b

ε - - +
b + + +
a - - -

ba + + +
bb + + +
aa - - -
ab - - -

Not Closed

ε ab b

ε - - +
b + - +
a - - -

ba - + -
bb + + +
aa - - -
ab - - -
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Distinctness

An observation table (S ,E ,T ) is distinct if for every pair of words
w , v ∈ S , we have row(w) ̸= row(v)

Distinct

ε ab b

ε - - +
b + + +
a - - -

ba + + +
bb + + +
aa - - -
ab - - -

Not Distinct

ε ab b

ε - - -
b - + +
a - - -

ba + + +
bb + + +
aa - - -
ab - - -
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DFA associated with observation table

Let (S ,E ,T ) be an observation table with respect to L ⊆ Σ∗ that
is closed and distinct. Then, there exists a DFA (Q,Σ, δ, q0,F )
that agrees with T (Myhill–Nerode, 1957), given by:

▶ States Q = row(S);

▶ Transitions δ(row(w), a) = row(wa);

▶ Initial state q0 = row(ε);

▶ Final states F = {row(w) | T (w , ε) = +}
We denote this DFA with D(S ,E ,T )
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Example

Let S = {ε, b, a}, E = {ε, ab, b}, and T as shown in the table.
Then, D(S ,E ,T ) is given by the following DFA:

−−+

−+−

+++
b

a

a, b

b

a

ε ab b

ε - - +
b + + +
a - + -

ba + + +
bb + + +
aa + + +
ab - + -
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L∗ Learner

▶ Incrementally build DFA by querying MAT

High level overview:

1. Start with an empty observation table

2. Fill the observation table with membership queries

3. Expand S until the observation table is closed

4. Perform an equivalence query with D(S ,E ,T )

5. Expand E with suffixes of counterexample
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L∗ Example
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iMAT Framework

▶ Teacher can respond with ”don’t care”
▶ How to build a DFA with incomplete information?

▶ Goal: Find a DFA that agrees with a set of positive examples
L+ and negative examples L− from the teacher
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Incomplete Observation Tables

▶ T is now a map
(S ∪ S × Σ)× E → {+,−,□}

▶ Given a table containing □, can we
fill it in such that it is closed and
distinct?

▶ NP Complete (Gold, 1978)

▶ We will use SMT solvers

ε ab b

ε - - □
b □ □ +
a - - □
ba + □ □
bb + + +
aa - - -
ab □ - -
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SMT Formulas

1. Construct a table of boolean variables bwv indexed by
(S ∪ (S × Σ))× E

2. For each w , v such that T (w , v) ̸= □, add a constraint

bwv = T (w , v)

3. Closedness (every bottom row appears in the top)∧
w∈S×Σ\S

( ∨
w ′∈S

(∧
v∈E

bwv = bw ′v

))

4. Distinctness (the top rows are unique)

∧
w∈S

 ∧
w ′∈S\{w}

(∨
v∈E

bwv ̸= bw ′v

)
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SMT Solvers

▶ Programmes like Z3 can solve these constraints, and provide a
model if it exists

▶ SMT solvers are highly optimized and can give good
performance in practice
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Modifying L∗

▶ The goal is to find a DFA that is minimal and consistent with
L+ and L−

▶ If the solver returns a model, we can construct a DFA and
query it as in the L∗ algorithm

▶ If the solver returns unsat, we have to do more work

▶ Not known which row of the bottom part of the table causes
the unsat

▶ Try all rows!



Introduction L∗ Algorithm L∗
□

Algorithm Alternative Algorithms Conclusion

L∗□ Learner

▶ We maintain a worklist of observation tables

1. Start with a worklist containing just an empty observation
table

2. Pop the head of the worklist

3. Fill the observation table with membership queries

4. Check if the table can be closed with an SMT solver

5. Add all different expansions of S to the worklist

6. Perform an equivalence query with D(S ,E ,T )

7. Extend E with suffixes of counterexample
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L∗□ Example

▶ Assume we have a teacher with

L+ = {ab, aab, bab, aaab, abab, baab, bbab}
L− = {aa, ba, bb, aaa, baa, aba, bba, abb, bbb}

▶ Worklist: {(S = {ε} ,E = {ε})}

ε

ε □
a □
b □

ε

ε -

a -
b - −

a, b
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L∗□ Example

▶ Receive counterexample baab

▶ Worklist: {(S = {ε} ,E = {ε, b, ab, aab, baab})}
ε b ab aab baab

ε □ □ + + +

a □ + + + □
b □ − + + □

▶ This table is unsat

▶ Worklist:

{(S = {ε, a} ,E = {ε, b, ab, aab, baab}),
(S = {ε, b} ,E = {ε, b, ab, aab, baab})}
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L∗□ Example

▶ Pop (S = {ε, a} ,E = {ε, b, ab, aab, baab}) from head of
worklist

ε b ab aab baab

ε □ □ + + +
a □ + + + □
b □ − + + □
aa − + + □ □
ab + − + □ □

▶ unsat again

▶ Worklist:

{(S = {ε, b} ,E = {ε, b, ab, aab, baab}),
(S = {ε, a, aa} ,E = {ε, b, ab, aab, baab}),
(S = {ε, a, ab} ,E = {ε, b, ab, aab, baab})}
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L∗□ Example

▶ Next two tables are again unsat

▶ Worklist:

{(S = {ε, a, ab} ,E = {ε, b, ab, aab, baab}),
(S = {ε, b, ba} ,E = {ε, b, ab, aab, baab}),
(S = {ε, b, bb} ,E = {ε, b, ab, aab, baab}),
· · · ,
(S = {ε, a, aa, aaa} ,E = {ε, b, ab, aab, baab}),
(S = {ε, a, aa, aab} ,E = {ε, b, ab, aab, baab})}

▶ Pop (S = {ε, a, ab} ,E = {ε, b, ab, aab, baab}) from the
worklist



Introduction L∗ Algorithm L∗
□

Algorithm Alternative Algorithms Conclusion

L∗□ Example

ε b ab aab baab

ε - + + + +
a + + + + +
ab + − + + +

b + − + + +
aa − + + + +
aba − + + + +
abb − + + + +

ε ab

a

b

a

a, b

a

b
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L∗□ Example

▶ Receive counterexample bbb

▶ New filled in table:
ε b ab aab baab bbb bb

ε - - + + + − −
a - + + + + − -
ab + − + + + - -

b - − + + + − -
aa − + + + + - -
aba − + + + + - -
abb − - + + + - -
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L∗□ Example

▶ Query new DFA

▶ Agrees with L+ and L−

ε

ab

a

b

a

b

a

ab

L+ = {ab, aab, bab, aaab, abab, baab, bbab}
L− = {aa, ba, bb, aaa, baa, aba, bba, abb, bbb}
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Correctness

L∗□ returns the smallest DFA that agrees with L+ and L−, which
can be shown with three main lemmas:

1. The sizes of S of the tables in the worklist increase
monotonically by at most 1

2. The worklist always contains at least one table that is
compatible with a correct minimal DFA

3. If a table (S ,E ,T ) is compatible with a smallest correct DFA
with states Q and |S | = |Q|, then (S ,E ,T ) can be filled in to
be closed and distinct
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Second Paper

▶ Learning Minimal Deterministic Automata from Inexperienced
Teachers

▶ Summary of research on ”inexperienced” teachers and
SAT/SMT approaches

▶ Encode DFA directly into the SMT formulas
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Alternative Approach

▶ Different notion of ”closedness” and ”distinctness”

▶ Use SMT minimization to find DFA consistent with current
table

Given a table (S ,E ,T ), two rows row(w), row(w ′) look similar,
denoted row(w) ≡ row(w ′), if the blanks can be filled in so the
rows are the same

▶ (+,□,−) ≡ (+,−,−)

▶ (+,□,−) ̸≡ (−,□,□)
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Weak closedness

An observation table (S ,E ,T ) is weakly closed if every bottom
row looks similar to a top row

Weakly closed

ε ab b

ε - - □
b □ □ +
a - - □
ba + □ □
bb + + +
aa - - -
ab □ - -

Not weakly Closed

ε ab b

ε - - □
b □ □ +
a - - □
ba + □ □
bb + + +
aa - - -
ab □ + -
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Weak consistency

A table (S ,E ,T ) is weakly consistent if for every pair of words
w ,w ′ ∈ S and letter a ∈ Σ such that row(w) ≡ row(w ′), we have
row(wa) ≡ row(w ′a)

▶ Distinctness implies consistency

▶ We use SMT solvers to find the smallest DFA that is
consistent with a weakly closed and weakly consistent table
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Biermann and Feldman

Let Sw be the state that is reached after reading the word w . To
determine the DFA, we have to solve the following constraints:

1. If two words lead to the same state, then any next step must
lead to the same state

2. If two words have a different acceptance, they must not lead
to the same state
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SMT Formulas

▶ Let n be the number of states. Define a table of boolean
variables bw ,i , indexed by W × {1, 2, . . . , n} with
W = (S ∪ (S × Σ))× E

▶ Add constraints to ensure exactly one of bw ,i is true for fixed
w and each i .

∧
w∈W

 ∨
1≤i≤n

bw ,i


∧

w∈W

 ∨
1≤i<i ′≤n

¬bw ,i ∨ ¬bw ,i ′


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More SMT Formulas

1. If two words lead to the same state, then any next step must
lead to the same state

bab,3 = bba,3 →∧
0≤i≤3

(baba,i = bbaa,i ∧ babb,i = bbab,i )
0

1

2

3

a

b

a, b

a, b

a, b
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More SMT Formulas

2. If two words have a different acceptance, they must not lead
to the same state

▶ If a ∈ L+ and b ∈ L−, then∧
0≤i<n

¬ (ba,i ∧ bb,i )
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Heule and Verwer

▶ Additionally include transitions di ,w ,j and final states fi in
encoding

▶ Reached states b have to conform to transitions d

▶ More variables, but sometimes faster in practice
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Finalizing

▶ Use binary search to find smallest n that is satisfiable

▶ Upper bound of n is |W |
▶ Model directly gives a DFA, which we can query
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Comparison to First Paper

▶ More variables (factor n)

▶ Harder to study and implement

▶ No implementation given

▶ No benchmarking of efficiency

▶ Comparison of efficiency is not given in the first paper
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Practicality

DFA size Mean learn time (s) Mean worklist items

5 0.1237 8.6200
6 0.3803 13.6381
7 1.1251 20.0886
8 10.6307 44.1613
9 50.1672 96.8784
10 98.0573 176.5200
11 1498.4836 933.2857
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Future Work

▶ Adapt work to modern algorithms
▶ TTT, ADT
▶ Discrimination trees

▶ Study incomplete teachers for more general automata
▶ Mealy machines
▶ Moore machines
▶ Weighted automata
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Summary

▶ Defined automata learning using the MAT framework and
looked at the L∗ algorithm

▶ Generalised the MAT framework using an incomplete teacher
and studied that L∗□ algorithm

▶ Discuss older methods of learning with incomplete teachers
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End

▶ Thank you for your attention!

▶ Any questions?
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