L* Algorithm

L^{*} Algorithm

Alternative Algorithms

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 0000

Automata Learning with an Incomplete Teacher Seminar Presentation

Jasper Laumen

January 22, 2025

Alternative Algorithms

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Conclusion 0000

The Papers

First paper:

- Automata Learning with an Incomplete Teacher
- ECOOP 2023
- Mark Moeller, Thomas Wiener, Alaia Solko-Breslin, Caleb Koch, Nate Foster, Alexandra Silva

Second paper:

- Learning Minimal Deterministic Automata from Inexperienced Teachers
- ISoLA 2012
- Martin Leucker, Daniel Neider

L* Algorithm

L^{*} Algorithm

Alternative Algorithms

イロト イボト イヨト イヨト ヨー のくや

Conclusion 0000

Automata Learning

- Closed box inference of DFAs
- Active learning
- MAT framework, iMAT framework
- ► L^* , L^*_{\Box} algorithms

L* Algorithm

Alternative Algorithms

Conclusion 0000

Applications of automata learning

Software Verification

- Regression testing of telecommunication systems (Siemens)
- Testing requirements of a brake-by-wire system (Volvo)

Security

Smartcards, network protocols
Legacy software (ASML)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Conclusion 0000

MAT Framework

- Minimally adequate teacher / oracle
- Teacher has a regular language $L \subseteq \Sigma^*$
- Active learning based on queries
 - Membership ("yes" / "no")
 - Equality ("correct" / "counterexample")
- Sufficient to determine correct and minimal DFA
- L* algorithm

Conclusion 0000

iMAT framework

- In practice, oracle is not perfect
 - How to validate equivalence queries?
- Incomplete minimally adequate teacher
- Teacher has sets $L^+ \subseteq \Sigma^*$ and $L^- \subseteq \Sigma^*$, with $L^+ \cap L^- = \emptyset$
- New membership query: "yes" / "no" / "don't care"

L^{*}_□ algorithm

Main subject of the paper

L^{*} Algorithm

Alternative Algorithms

Conclusion 0000

Observation Tables

Given a language $L \subseteq \Sigma^*$, an observation table is a tuple (S, E, T), where

- S ⊆ Σ* is a prefix-closed set of words
- E ⊆ Σ* is a suffix-closed set of words
- $T: (S \cup S \times \Sigma) \times E \rightarrow \{+, -\}$ is a map on words

Example with $S = \{\varepsilon, b, a\}$ and $E = \{\varepsilon, ab, b\}$

	ε	ab	Ь
ε	-	-	+
Ь	+	+	+
а	-	-	-
ba	+	+	+
bb	+	+	+
аа	-	-	-
ab	-	-	-

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Alternative Algorithms

Conclusion 0000

Closedness

An observation table (S, E, T) is closed if for every word $w \in S$ and letter $a \in \Sigma$, we have $row(wa) \in row(S)$

Closed

Not Closed

	ε	ab	Ь
ε	-	-	+
b	+	+	+
а	-	-	-
ba bb	+	+	+
bb	+	+	+
аа	-	-	-
ab	-	-	-

_		ε	ab	Ь
_	ε	-	-	+
	b	+	-	+
	а	-	-	-
_	ba	-	+	-
	ba bb	+	+	+
	aa ab	-	-	-
	ab	-	-	-

L* Algorithm

L^{*} Algorithm

Alternative Algorithms

Conclusion 0000

Distinctness

An observation table (S, E, T) is distinct if for every pair of words $w, v \in S$, we have $row(w) \neq row(v)$

Distinct

Not Distinct

	ε	ab	b
ε	-	-	+
b	+	+	+
а	-	-	-
ba	+	+	+
bb	+	+	+
аа	-	-	-
ab	-	-	-

	ε	ab	Ь
ε	-	-	-
b	-	+	+
а	-	-	-
ba	+	+	+
ba bb	+	+	+
aa ab	-	-	-
ab	-	-	-

*ロ * * ● * * ● * * ● * ● * ● * ●

L^{*} Algorithm

Alternative Algorithms

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Conclusion 0000

DFA associated with observation table

L^{*} Algorithm

Alternative Algorithms

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Conclusion 0000

DFA associated with observation table

L^{*} Algorithm

Alternative Algorithms

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Conclusion 0000

DFA associated with observation table

• Transitions
$$\delta(row(w), a) = row(wa)$$
;

L^{*} Algorithm

Alternative Algorithms

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Conclusion 0000

DFA associated with observation table

• States
$$Q = \operatorname{row}(S)$$
;

- Transitions $\delta(row(w), a) = row(wa)$;
- lnitial state $q_0 = row(\varepsilon)$;

L^{*} Algorithm

Alternative Algorithms

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Conclusion 0000

DFA associated with observation table

Let (S, E, T) be an observation table with respect to $L \subseteq \Sigma^*$ that is closed and distinct. Then, there exists a DFA $(Q, \Sigma, \delta, q_0, F)$ that agrees with T (Myhill–Nerode, 1957), given by:

• States
$$Q = \operatorname{row}(S)$$
;

• Transitions $\delta(row(w), a) = row(wa)$;

Final states
$$F = \{ row(w) \mid T(w, \varepsilon) = + \}$$

L^{*} Algorithm

Alternative Algorithms

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Conclusion 0000

DFA associated with observation table

Let (S, E, T) be an observation table with respect to $L \subseteq \Sigma^*$ that is closed and distinct. Then, there exists a DFA $(Q, \Sigma, \delta, q_0, F)$ that agrees with T (Myhill–Nerode, 1957), given by:

• States
$$Q = \operatorname{row}(S)$$
;

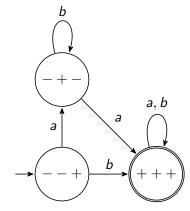
• Transitions $\delta(row(w), a) = row(wa)$;

• Initial state $q_0 = row(\varepsilon)$;

Final states $F = \{ row(w) \mid T(w, \varepsilon) = + \}$

We denote this DFA with $\mathcal{D}(S, E, T)$

L* Algorithm


L^{*} Algorithm

Alternative Algorithms

Conclusion 0000

Example

Let $S = \{\varepsilon, b, a\}$, $E = \{\varepsilon, ab, b\}$, and T as shown in the table. Then, $\mathcal{D}(S, E, T)$ is given by the following DFA:

	ε	ab	Ь
ε	-	-	+
b	+	+	+
а	-	+	-
ba	+	+	+
bb	+	+	+
аа	+	+	+
ab	-	+	-

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

L* Algorithm

Alternative Algorithms

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Conclusion 0000

L* Learner

Incrementally build DFA by querying MAT High level overview:

- 1. Start with an empty observation table
- 2. Fill the observation table with membership queries
- 3. Expand S until the observation table is closed
- 4. Perform an equivalence query with $\mathcal{D}(S, E, T)$
- 5. Expand E with suffixes of counterexample

L^{*} Algorithm 000000●

L^{*} Algorithm

Alternative Algorithms

Conclusion

L^{*} Example

L* Algorithm

L^{*} Algorithm

Alternative Algorithms

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Conclusion 0000

iMAT Framework

Teacher can respond with "don't care"

How to build a DFA with incomplete information?

Goal: Find a DFA that agrees with a set of positive examples L⁺ and negative examples L⁻ from the teacher

L* Algorithm

Alternative Algorithms

Conclusion 0000

Incomplete Observation Tables

- ► T is now a map $(S \cup S \times \Sigma) \times E \rightarrow \{+, -, \Box\}$
- ► Given a table containing □, can we fill it in such that it is closed and distinct?
- ▶ NP Complete (Gold, 1978)
- We will use SMT solvers

	ε	ab	b
ε	-	-	
Ь			+
а	-	-	
ba	+		
bb	+	+	+
аа	-	-	-
ab		-	-

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ ��や

L* Algorithm

L^{*} Algorithm

Alternative Algorithms

Conclusion

SMT Formulas

Alternative Algorithms

Conclusion 0000

SMT Formulas

1. Construct a table of boolean variables b_{wv} indexed by $(S \cup (S \times \Sigma)) \times E$

Alternative Algorithms

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 0000

SMT Formulas

- 1. Construct a table of boolean variables b_{wv} indexed by $(S \cup (S \times \Sigma)) \times E$
- 2. For each w, v such that $T(w, v) \neq \Box$, add a constraint

$$b_{wv}=T(w,v)$$

Alternative Algorithms

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 0000

SMT Formulas

- 1. Construct a table of boolean variables b_{wv} indexed by $(S \cup (S \times \Sigma)) \times E$
- 2. For each w, v such that $T(w, v) \neq \Box$, add a constraint

$$b_{wv} = T(w, v)$$

3. Closedness (every bottom row appears in the top)

$$\bigwedge_{w \in S \times \Sigma \setminus S} \left(\bigvee_{w' \in S} \left(\bigwedge_{v \in E} b_{wv} = b_{w'v} \right) \right)$$

Alternative Algorithms

Conclusion 0000

SMT Formulas

- 1. Construct a table of boolean variables b_{wv} indexed by $(S \cup (S \times \Sigma)) \times E$
- 2. For each w, v such that $T(w, v) \neq \Box$, add a constraint

$$b_{wv}=T(w,v)$$

3. Closedness (every bottom row appears in the top)

$$\bigwedge_{w \in S \times \Sigma \setminus S} \left(\bigvee_{w' \in S} \left(\bigwedge_{v \in E} b_{wv} = b_{w'v} \right) \right)$$

4. Distinctness (the top rows are unique)

$$\bigwedge_{w \in S} \left(\bigwedge_{w' \in S \setminus \{w\}} \left(\bigvee_{v \in E} b_{wv} \neq b_{w'v} \right) \right)$$

L* Algorithm

L^{*} Algorithm

Alternative Algorithms

Conclusion 0000

SMT Solvers

- Programmes like Z3 can solve these constraints, and provide a model if it exists
- SMT solvers are highly optimized and can give good performance in practice

Alternative Algorithms

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

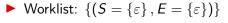
Modifying L^*

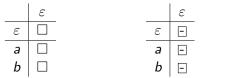
- The goal is to find a DFA that is minimal and consistent with L⁺ and L⁻
- If the solver returns a model, we can construct a DFA and query it as in the L* algorithm
- If the solver returns unsat, we have to do more work
- Not known which row of the bottom part of the table causes the unsat
- ► Try all rows!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

L^*_{\Box} Learner

- We maintain a worklist of observation tables
- 1. Start with a worklist containing just an empty observation table
- 2. Pop the head of the worklist
- 3. Fill the observation table with membership queries
- 4. Check if the table can be closed with an SMT solver
- 5. Add all different expansions of S to the worklist
- 6. Perform an equivalence query with $\mathcal{D}(S, E, T)$
- 7. Extend E with suffixes of counterexample


Alternative Algorithms


Conclusion 0000

L^*_{\Box} Example

Assume we have a teacher with

 $L^+ = \{ab, aab, bab, aaab, abab, baab, bbab\}$ $L^- = \{aa, ba, bb, aaa, baa, aba, bba, abb, bbb\}$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Alternative Algorithms

Conclusion

L^*_{\Box} Example

Receive counterexample baab

• Worklist: $\{(S = \{\varepsilon\}, E = \{\varepsilon, b, ab, aab, baab\})\}$

	ε	Ь	ab	aab	baab
ε			+	+	+
а		+	+	+	
b		—	+	+	

This table is unsat

Worklist:

$$\{(S = \{\varepsilon, a\}, E = \{\varepsilon, b, ab, aab, baab\}), \\ (S = \{\varepsilon, b\}, E = \{\varepsilon, b, ab, aab, baab\})\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

L^{*} Algorithm 00000000●00000 Alternative Algorithms

L^*_{\Box} Example

Pop (S = {ε, a}, E = {ε, b, ab, aab, baab}) from head of worklist

	ε				baab
ε			+	+	+
а		+	+	+++	
b		_	+	+	
aa ab	-	+	+++		
ab	+	—	+		

unsat again

Worklist:

$$\{(S = \{\varepsilon, b\}, E = \{\varepsilon, b, ab, aab, baab\}), \\ (S = \{\varepsilon, a, aa\}, E = \{\varepsilon, b, ab, aab, baab\}), \\ (S = \{\varepsilon, a, ab\}, E = \{\varepsilon, b, ab, aab, baab\})\}$$

Conclusion

Alternative Algorithms

Conclusion 0000

L^*_{\Box} Example

Next two tables are again unsat

Worklist:

$$\{(S = \{\varepsilon, a, ab\}, E = \{\varepsilon, b, ab, aab, baab\}), \\ (S = \{\varepsilon, b, ba\}, E = \{\varepsilon, b, ab, aab, baab\}), \\ (S = \{\varepsilon, b, bb\}, E = \{\varepsilon, b, ab, aab, baab\}), \\ \cdots, \\ (S = \{\varepsilon, a, aa, aaa\}, E = \{\varepsilon, b, ab, aab, baab\}), \\ (S = \{\varepsilon, a, aa, aaa\}, E = \{\varepsilon, b, ab, aab, baab\}), \\ (S = \{\varepsilon, a, aa, aab\}, E = \{\varepsilon, b, ab, aab, baab\})\}$$

Pop (S = {ε, a, ab}, E = {ε, b, ab, aab, baab}) from the worklist

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ · · · ○ < @

L* Algorithm

L^{*} Algorithm

Alternative Algorithms

Conclusion

L^*_{\Box} Example

		ε	Ь	ab	aab	baab	a
-	ε	-	+	+	+	+	$\rightarrow (\varepsilon)$
	а	+	+	+	+	+	
	ab	+	—	+	+	+	a a
-	b	+	—	+	+	+	b a, b
	аа	—	+	+	+	+	
	aba	—	+	+	+	+	
	abb	—	+	+	+	+	ď

L^{*} Algorithm ○○○○○○○○○○○○○ Alternative Algorithms

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

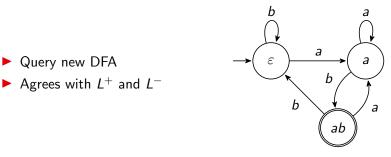
Conclusion 0000

L^*_{\Box} Example

- Receive counterexample bbb
- New filled in table:

	ε	b	ab	aab	baab	bbb	bb
ε	-	-		+		_	_
а	Ξ	+	+	+	+	_	-
ab	+	_	+	+	+	-	-
Ь	-	_	+	+	+	_	-
аа	_	+	+	+	+	-	-
aba	—	+	+	+	+	-	-
abb	-	-	+	+	+	-	-

L* Algorithm


L^{*} Algorithm

Alternative Algorithms

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Conclusion

 L^*_{\Box} Example

 $L^+ = \{ab, aab, bab, aaab, abab, baab, bbab\}$ $L^- = \{aa, ba, bb, aaa, baa, aba, bba, abb, bbb\}$

L* Algorithm

L^{*} Algorithm

Alternative Algorithms

Conclusion 0000

Correctness

 L^*_{\Box} returns the smallest DFA that agrees with L^+ and L^- , which can be shown with three main lemmas:

Alternative Algorithms

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Correctness

 L^*_{\Box} returns the smallest DFA that agrees with L^+ and L^- , which can be shown with three main lemmas:

1. The sizes of S of the tables in the worklist increase monotonically by at most 1

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Correctness

 L^*_{\Box} returns the smallest DFA that agrees with L^+ and L^- , which can be shown with three main lemmas:

- 1. The sizes of S of the tables in the worklist increase monotonically by at most 1
- 2. The worklist always contains at least one table that is compatible with a correct minimal DFA

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Correctness

 L^*_{\Box} returns the smallest DFA that agrees with L^+ and L^- , which can be shown with three main lemmas:

- 1. The sizes of S of the tables in the worklist increase monotonically by at most 1
- 2. The worklist always contains at least one table that is compatible with a correct minimal DFA
- 3. If a table (S, E, T) is compatible with a smallest correct DFA with states Q and |S| = |Q|, then (S, E, T) can be filled in to be closed and distinct

L* Algorithm

L^{*} Algorithm

Alternative Algorithms

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Conclusion 0000

Second Paper

- Learning Minimal Deterministic Automata from Inexperienced Teachers
- Summary of research on "inexperienced" teachers and SAT/SMT approaches
- Encode DFA directly into the SMT formulas

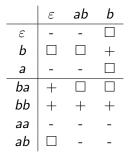
Alternative Approach

- Different notion of "closedness" and "distinctness"
- Use SMT minimization to find DFA consistent with current table

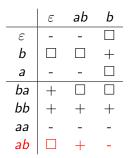
Given a table (S, E, T), two rows row(w), row(w') look similar, denoted $row(w) \equiv row(w')$, if the blanks can be filled in so the rows are the same

$$(+, \Box, -) \equiv (+, -, -)$$
$$(+, \Box, -) \not\equiv (-, \Box, \Box)$$

L^{*} Algorithm


Alternative Algorithms

Conclusion 0000


Weak closedness

An observation table (S, E, T) is weakly closed if every bottom row looks similar to a top row

Weakly closed

Not weakly Closed

イロト 不得 トイヨト イヨト

3

L^{*} Algorithm

Alternative Algorithms

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Conclusion 0000

Weak consistency

A table (S, E, T) is weakly consistent if for every pair of words $w, w' \in S$ and letter $a \in \Sigma$ such that $row(w) \equiv row(w')$, we have $row(wa) \equiv row(w'a)$

- Distinctness implies consistency
- We use SMT solvers to find the smallest DFA that is consistent with a weakly closed and weakly consistent table

L^{*} Algorithm

Alternative Algorithms

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Conclusion 0000

Biermann and Feldman

Let S_w be the state that is reached after reading the word w. To determine the DFA, we have to solve the following constraints:

- 1. If two words lead to the same state, then any next step must lead to the same state
- 2. If two words have a different acceptance, they must not lead to the same state

L* Algorithm

L^{*} Algorithm

Alternative Algorithms

Conclusion

SMT Formulas

<ロト < 個 ト < 目 ト < 目 ト 目 の Q ()</p>

Alternative Algorithms

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 0000

SMT Formulas

Let n be the number of states. Define a table of boolean variables b_{w,i}, indexed by W × {1,2,...,n} with W = (S ∪ (S × Σ)) × E

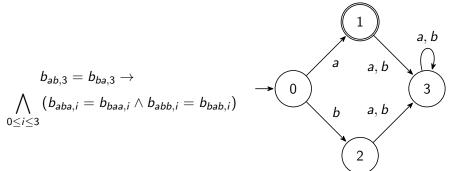
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

SMT Formulas

- Let n be the number of states. Define a table of boolean variables b_{w,i}, indexed by W × {1,2,...,n} with W = (S ∪ (S × Σ)) × E
- Add constraints to ensure exactly one of b_{w,i} is true for fixed w and each i.

$$\bigwedge_{w \in W} \left(\bigvee_{1 \le i \le n} b_{w,i} \right)$$
$$\bigwedge_{w \in W} \left(\bigvee_{1 \le i < i' \le n} \neg b_{w,i} \lor \neg b_{w,i'} \right)$$

L^{*} Algorithm


Alternative Algorithms

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 0000

More SMT Formulas

1. If two words lead to the same state, then any next step must lead to the same state

L^{*} Algorithm

Alternative Algorithms

*ロ * * ● * * ● * * ● * ● * ● * ●

Conclusion 0000

More SMT Formulas

- 2. If two words have a different acceptance, they must not lead to the same state
- ▶ If $a \in L^+$ and $b \in L^-$, then

$$\bigwedge_{0 \leq i < n} \neg (b_{a,i} \land b_{b,i})$$

L^{*} Algorithm

Alternative Algorithms

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 0000

Heule and Verwer

- Additionally include transitions d_{i,w,j} and final states f_i in encoding
- Reached states b have to conform to transitions d
- More variables, but sometimes faster in practice

L* Algorithm

L^{*} Algorithm

Alternative Algorithms

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 0000

Finalizing

- Use binary search to find smallest n that is satisfiable
- Upper bound of n is |W|
- Model directly gives a DFA, which we can query

L* Algorithm

Alternative Algorithms

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Conclusion 0000

Comparison to First Paper

- More variables (factor n)
- Harder to study and implement
- No implementation given
- No benchmarking of efficiency
- Comparison of efficiency is not given in the first paper

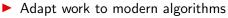
L* Algorithm

L^{*} Algorithm

Alternative Algorithms

Conclusion •000

Practicality


DFA size	Mean learn time (s)	Mean worklist items
5	0.1237	8.6200
6	0.3803	13.6381
7	1.1251	20.0886
8	10.6307	44.1613
9	50.1672	96.8784
10	98.0573	176.5200
11	1498.4836	933.2857

Alternative Algorithms

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Conclusion

Future Work

TTT, ADT

- Discrimination trees
- Study incomplete teachers for more general automata
 - Mealy machines
 - Moore machines
 - Weighted automata

L* Algorithm

L^{*} Algorithm

Alternative Algorithms

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Conclusion

Summary

- Defined automata learning using the MAT framework and looked at the L* algorithm
- ► Generalised the MAT framework using an incomplete teacher and studied that L^{*}_□ algorithm
- Discuss older methods of learning with incomplete teachers

L* Algorithm

L^{*} Algorithm

Alternative Algorithms

Conclusion

Thank you for your attention!

Any questions?

