
Linear logic Linear haskell Conclusion

Linear Logic and Haskell

Lyra van Bokhoven

January 2025

1 / 58



Linear logic Linear haskell Conclusion

Introduction

In traditional logic, proofs are free to copy:
A,A→ B ⊢ A×B is a valid judgement.

Let A represent possession of a cake.
Let B represent a feeling of fullness.
Then, the judgement above would say that one can have a cake
and eat it too.

To prevent cakes from being copied, we want a logic that gives us
better control over resources. Linear logic provides such control.

2 / 58



Linear logic Linear haskell Conclusion

Introduction

In traditional logic, proofs are free to copy:
A,A→ B ⊢ A×B is a valid judgement.

Let A represent possession of a cake.
Let B represent a feeling of fullness.
Then, the judgement above would say that one can have a cake
and eat it too.

To prevent cakes from being copied, we want a logic that gives us
better control over resources. Linear logic provides such control.

2 / 58



Linear logic Linear haskell Conclusion

Introduction

In traditional logic, proofs are free to copy:
A,A→ B ⊢ A×B is a valid judgement.

Let A represent possession of a cake.
Let B represent a feeling of fullness.
Then, the judgement above would say that one can have a cake
and eat it too.

To prevent cakes from being copied, we want a logic that gives us
better control over resources. Linear logic provides such control.

2 / 58



Linear logic Linear haskell Conclusion

Outline

Linear logic
Intuitionistic logic
Intuitionistic terms
Linear logic
Linear terms

Linear haskell
Theory
Implementation in Haskell
Examples

Conclusion

3 / 58



Linear logic Linear haskell Conclusion

Outline

Linear logic
Intuitionistic logic
Intuitionistic terms
Linear logic
Linear terms

Linear haskell
Theory
Implementation in Haskell
Examples

Conclusion

4 / 58



Linear logic Linear haskell Conclusion

Notation

A proposition is one of:
▶ a constant X,
▶ implication between propositions A→ B,
▶ conjunction between propositions A×B, or
▶ disjunction between propositions A+B.

An assumption is a sequence of 0 or more propositions.
If A is a proposition and Γ is an assumption, then Γ ⊢ A is a
judgement.
A rule is a horizontal line with zero or more judgements above it,
and one below it:

Γ ⊢ A+B ∆,A ⊢ C ∆,B ⊢ C

Γ,∆ ⊢ C

5 / 58



Linear logic Linear haskell Conclusion

Notation

A proposition is one of:
▶ a constant X,
▶ implication between propositions A→ B,
▶ conjunction between propositions A×B, or
▶ disjunction between propositions A+B.

An assumption is a sequence of 0 or more propositions.

If A is a proposition and Γ is an assumption, then Γ ⊢ A is a
judgement.
A rule is a horizontal line with zero or more judgements above it,
and one below it:

Γ ⊢ A+B ∆,A ⊢ C ∆,B ⊢ C

Γ,∆ ⊢ C

5 / 58



Linear logic Linear haskell Conclusion

Notation

A proposition is one of:
▶ a constant X,
▶ implication between propositions A→ B,
▶ conjunction between propositions A×B, or
▶ disjunction between propositions A+B.

An assumption is a sequence of 0 or more propositions.
If A is a proposition and Γ is an assumption, then Γ ⊢ A is a
judgement.

A rule is a horizontal line with zero or more judgements above it,
and one below it:

Γ ⊢ A+B ∆,A ⊢ C ∆,B ⊢ C

Γ,∆ ⊢ C

5 / 58



Linear logic Linear haskell Conclusion

Notation

A proposition is one of:
▶ a constant X,
▶ implication between propositions A→ B,
▶ conjunction between propositions A×B, or
▶ disjunction between propositions A+B.

An assumption is a sequence of 0 or more propositions.
If A is a proposition and Γ is an assumption, then Γ ⊢ A is a
judgement.
A rule is a horizontal line with zero or more judgements above it,
and one below it:

Γ ⊢ A+B ∆,A ⊢ C ∆,B ⊢ C

Γ,∆ ⊢ C

5 / 58



Linear logic Linear haskell Conclusion

The rules of intuitionistic logic: tautology

Id
A ⊢ A

6 / 58



Linear logic Linear haskell Conclusion

The rules of intuitionistic logic: structural rules

Γ,∆ ⊢ A
Exchange

∆,Γ ⊢ A

Γ,A,A ⊢ B
Contraction

Γ,A ⊢ B

Γ ⊢ B Weakening
Γ,A ⊢ B

Might seem trivial, but key difference with linear logic!

7 / 58



Linear logic Linear haskell Conclusion

The rules of intuitionistic logic: structural rules

Γ,∆ ⊢ A
Exchange

∆,Γ ⊢ A

Γ,A,A ⊢ B
Contraction

Γ,A ⊢ B

Γ ⊢ B Weakening
Γ,A ⊢ B

Might seem trivial, but key difference with linear logic!

7 / 58



Linear logic Linear haskell Conclusion

The rules of intuitionistic logic: logical rules (→)

Γ,A ⊢ B
→-I

Γ ⊢ A→ B

Γ ⊢ A→ B ∆ ⊢ A →-E
Γ,∆ ⊢ B

Sometimes just Γ instead of concatenating Γ and ∆:

Γ ⊢ A→ B Γ ⊢ A →-E
Γ ⊢ B

Equivalent in intuitionistic logic.
In linear logic, this is seen as combining two different sets of
resources.

8 / 58



Linear logic Linear haskell Conclusion

The rules of intuitionistic logic: logical rules (→)

Γ,A ⊢ B
→-I

Γ ⊢ A→ B

Γ ⊢ A→ B ∆ ⊢ A →-E
Γ,∆ ⊢ B

Sometimes just Γ instead of concatenating Γ and ∆:

Γ ⊢ A→ B Γ ⊢ A →-E
Γ ⊢ B

Equivalent in intuitionistic logic.
In linear logic, this is seen as combining two different sets of
resources.

8 / 58



Linear logic Linear haskell Conclusion

The rules of intuitionistic logic: logical rules (×)

Γ ⊢ A ∆ ⊢ B ×-I
Γ,∆ ⊢ A×B

Γ ⊢ A×B ∆,A,B ⊢ C
×-E

Γ,∆ ⊢ C

Or, equivalently:

Γ ⊢ A Γ ⊢ B ×-I′
Γ ⊢ A×B

Γ ⊢ A×B ×-E′
1Γ ⊢ A

Γ ⊢ A×B ×-E′
2Γ ⊢ B

9 / 58



Linear logic Linear haskell Conclusion

The rules of intuitionistic logic: logical rules (×)

Γ ⊢ A ∆ ⊢ B ×-I
Γ,∆ ⊢ A×B

Γ ⊢ A×B ∆,A,B ⊢ C
×-E

Γ,∆ ⊢ C

Or, equivalently:

Γ ⊢ A Γ ⊢ B ×-I′
Γ ⊢ A×B

Γ ⊢ A×B ×-E′
1Γ ⊢ A

Γ ⊢ A×B ×-E′
2Γ ⊢ B

9 / 58



Linear logic Linear haskell Conclusion

The rules of intuitionistic logic: logical rules (+)

Γ ⊢ A +-I1Γ ⊢ A+B

Γ ⊢ B +-I2Γ ⊢ A+B

Γ ⊢ A+B ∆,A ⊢ C ∆,B ⊢ C
+-E

Γ,∆ ⊢ C

10 / 58



Linear logic Linear haskell Conclusion

Example derivation: to have a cake and eat it too

Id
A ⊢ A

Id
A→ B ⊢ A→ B

Id
A ⊢ A →-E

A→ B,A ⊢ B
×-I

A,A→ B,A ⊢ A×B
Exchange

A→ B,A,A ⊢ A×B
Contraction

A→ B,A ⊢ A×B

11 / 58



Linear logic Linear haskell Conclusion

Outline

Linear logic
Intuitionistic logic
Intuitionistic terms
Linear logic
Linear terms

Linear haskell
Theory
Implementation in Haskell
Examples

Conclusion

12 / 58



Linear logic Linear haskell Conclusion

Intuitionistic terms

We introduce a term for each logical rule (and the identity rule), so
each connective will have a constructor and a destructor term.

Rule Term
Id x

→-I λx.u

→-E s(t)

×-I (t, u)

×-E case s of (x, y)→ v

+-I1 inl(t)
+-I2 inr(u)
+-E case s of inl(x)→ v; inr(y)→ w

Since proofs consist of rules, and rules are encoded by terms, a
proof tree is uniquely encoded by its root term.

13 / 58



Linear logic Linear haskell Conclusion

Intuitionistic terms

We introduce a term for each logical rule (and the identity rule), so
each connective will have a constructor and a destructor term.

Rule Term
Id x

→-I λx.u

→-E s(t)

×-I (t, u)

×-E case s of (x, y)→ v

+-I1 inl(t)
+-I2 inr(u)
+-E case s of inl(x)→ v; inr(y)→ w

Since proofs consist of rules, and rules are encoded by terms, a
proof tree is uniquely encoded by its root term.

13 / 58



Linear logic Linear haskell Conclusion

Intuitionistic terms

We introduce a term for each logical rule (and the identity rule), so
each connective will have a constructor and a destructor term.

Rule Term
Id x

→-I λx.u

→-E s(t)

×-I (t, u)

×-E case s of (x, y)→ v

+-I1 inl(t)
+-I2 inr(u)
+-E case s of inl(x)→ v; inr(y)→ w

Since proofs consist of rules, and rules are encoded by terms, a
proof tree is uniquely encoded by its root term.

13 / 58



Linear logic Linear haskell Conclusion

Notation

Assumptions are now written x1 : A1, . . . , xn : An

Assumptions must contain distinct variables (important when
concatenating).
Judgements now have a term t on the right hand side: Γ ⊢ t : A

14 / 58



Linear logic Linear haskell Conclusion

Rules with terms

All rules now have terms. Some examples:

Id
x : A ⊢ x : A

Γ, y : A, z : A ⊢ u : B
Contraction

Γ, x : A ⊢ u [x/y, x/z] : B

Γ ⊢ s : A→ B ∆ ⊢ t : A →-E
Γ,∆ ⊢ s(t) : B

15 / 58



Linear logic Linear haskell Conclusion

Example derivation

Id
y : A ⊢ y : A

Id
f : A→ B ⊢ f : A→ B

Id
z : A ⊢ z : A

→-E
f : A→ B, z : A ⊢ f(z) : B

×-I
y : A, f : A→ B, z : A ⊢ (y, f(z)) : A×B

Exchange
f : A→ B, y : A, z : A ⊢ (y, f(z)) : A×B

Contraction
f : A→ B, x : A ⊢ (x, f(x)) : A×B

16 / 58



Linear logic Linear haskell Conclusion

Outline

Linear logic
Intuitionistic logic
Intuitionistic terms
Linear logic
Linear terms

Linear haskell
Theory
Implementation in Haskell
Examples

Conclusion

17 / 58



Linear logic Linear haskell Conclusion

Linear logic

We want greater control over resources:
▶ No discarding (contraction)
▶ No adding out of nowhere (weakening)

To achieve this, we have two types of assumptions:
▶ Linear assumptions disallow contraction and weakening,

written ⟨A⟩. This means that A must be used once.
▶ Intuitionistic assumptions allow contraction and weakening,

written [A]. This means that A can be used arbitrarily much.

18 / 58



Linear logic Linear haskell Conclusion

Symbol summary

We use some new symbols:
symbol name usage pronunciation
⊸ lollipop A ⊸ B “Consume A yielding B”
⊗ tensor A⊗B “Both A and B”
& with A&B “Choose from A and B”
⊕ disjunction A⊕B “Either A or B”
! bang !A “Of course A”

Let A and B again represent posession of a cake and a feeling of
fullness.

19 / 58



Linear logic Linear haskell Conclusion

Example

Let A mean “I have 10 euros”.
Let B mean “I have a pizza”.
Let C mean “I have a cake”.
Then we can add axioms ⟨A⟩ ⊢ B and ⟨A⟩ ⊢ C: One 10 euro note
can be used to get a pizza/cake.

Now, ⟨A⟩, ⟨A⟩ ⊢ B ⊗ C means that for 20 euros, I can buy a pizza
and a cake.
⟨A⟩ ⊢ B & C means that for 10 euros, I can choose between a
pizza and a cake.
⟨A⟩ ⊢ B ⊕ C means that for 10 euros, I can buy a pizza or a cake,
but I have no choice. For example, because the bakery is closed.

20 / 58



Linear logic Linear haskell Conclusion

Example

Let B mean “I have a pizza”.
Let C mean “I have a cake”.
Let D mean “I am happy.”.

Then ⟨B ⊗ C⟩ ⊢ D means I am happy when I have both a pizza
and a cake.
⟨B & C⟩ ⊢ D means I am happy when I have a choice between a
pizza and a cake.
⟨B ⊕ C⟩ ⊢ D means I am happy when I have either a pizza or a
cake, and don’t care which.

21 / 58



Linear logic Linear haskell Conclusion

Example

Let A mean “I have 10 euros”.
Let B mean “I have a pizza”.
Let C mean “I have a cake”.
Let D mean “I am happy.”

Then ⟨!A⟩ ⊢ !B means that with one infinite supply of 10 euro
notes, I can buy an infinite amount of pizza.
⟨!B⟩ ⊢ D means that I am happy when given an infinite supply of
pizza.
[B] ⊢ D also means that I am happy when given an infinite supply
of pizza.

In fact, ⟨!X⟩ and [X] prove the exact same propositions.

22 / 58



Linear logic Linear haskell Conclusion

Example

Let A mean “I have 10 euros”.
Let B mean “I have a pizza”.
Let C mean “I have a cake”.
Let D mean “I am happy.”

Then ⟨!A⟩ ⊢ !B means that with one infinite supply of 10 euro
notes, I can buy an infinite amount of pizza.
⟨!B⟩ ⊢ D means that I am happy when given an infinite supply of
pizza.
[B] ⊢ D also means that I am happy when given an infinite supply
of pizza.
In fact, ⟨!X⟩ and [X] prove the exact same propositions.

22 / 58



Linear logic Linear haskell Conclusion

The rules of linear logic: tautology

⟨Id⟩
⟨A⟩ ⊢ A

[Id]
[A] ⊢ A

We want to be able to introduce both linear and intuitionistic
assumptions.

23 / 58



Linear logic Linear haskell Conclusion

The rules of linear logic: structural rules

Γ,∆ ⊢ A
Exchange

∆,Γ ⊢ A

Γ, [A], [A] ⊢ B
Contraction

Γ, [A] ⊢ B

Γ ⊢ B Weakening
Γ, [A] ⊢ B

Note that contraction and weakening only work with intuitionistic
assumptions.

24 / 58



Linear logic Linear haskell Conclusion

The rules of linear logic: logical rules (⊸)

Γ, ⟨A⟩ ⊢ B
⊸-I

Γ ⊢ A ⊸ B

Γ ⊢ A ⊸ B ∆ ⊢ A ⊸-E
Γ,∆ ⊢ B

Note that these rules are the same as those for →, except
assumptions are linear.

25 / 58



Linear logic Linear haskell Conclusion

The rules of linar logic: logical rules (⊗)

Γ ⊢ A ∆ ⊢ B ⊗-I
Γ,∆ ⊢ A⊗B

Γ ⊢ A⊗B ∆, ⟨A⟩, ⟨B⟩ ⊢ C
⊗-E

Γ,∆ ⊢ C

Note that these rules are the same as those for ×, except
assumptions are linear.

26 / 58



Linear logic Linear haskell Conclusion

The rules of linar logic: logical rules (&)

Γ ⊢ A Γ ⊢ B
&-I

Γ ⊢ A&B

Γ ⊢ A&B &-E1Γ ⊢ A

Γ ⊢ A&B &-E2Γ ⊢ B

Note that these rules are the same as the alternative rules for ×.
They are no longer equivalent in linear logic!

27 / 58



Linear logic Linear haskell Conclusion

The rules of linear logic: logical rules (⊕)

Γ ⊢ A ⊕-I1Γ ⊢ A⊕B

Γ ⊢ B ⊕-I2Γ ⊢ A⊕B

Γ ⊢ A⊕B ∆, ⟨A⟩ ⊢ C ∆, ⟨B⟩ ⊢ C
⊕-E

Γ,∆ ⊢ C

Note that these rules are the same as those for +, except
assumptions are linear.

28 / 58



Linear logic Linear haskell Conclusion

The rules of linear logic: logical rules (!)

[Γ ] ⊢ A
!-I

[Γ ] ⊢ !A

Γ ⊢ !A ∆, [A] ⊢ B
!-E

Γ,∆ ⊢ B

Note that these rules again use intuitionistic assumptions.

29 / 58



Linear logic Linear haskell Conclusion

Example derivation: to have a cake and eat it too

⟨Id⟩
⟨!A⟩ ⊢ !A

[Id]
[A] ⊢ A

!-I
[A] ⊢ !A

⟨Id⟩
⟨A ⊸ B⟩ ⊢ A ⊸ B

[Id]
[A] ⊢ A

⊸-E⟨A ⊸ B⟩, [A] ⊢ B
×-I

[A], ⟨A ⊸ B⟩, [A] ⊢ !A⊗B
Exchange

⟨A ⊸ B⟩, [A], [A] ⊢ !A⊗B
Contraction⟨A ⊸ B⟩, [A] ⊢ !A⊗B

!-E⟨!A⟩, ⟨A ⊸ B⟩ ⊢ !A⊗B

30 / 58



Linear logic Linear haskell Conclusion

Outline

Linear logic
Intuitionistic logic
Intuitionistic terms
Linear logic
Linear terms

Linear haskell
Theory
Implementation in Haskell
Examples

Conclusion

31 / 58



Linear logic Linear haskell Conclusion

Linear terms

Same idea as intuitionistic terms:
rule term

⟨Id⟩ and [Id] x

⊸-I λ⟨x⟩.u
⊸-E s⟨t⟩
⊗-I ⟨t, u⟩
⊗-E case s of ⟨x, y⟩ → v

&-I ⟨⟨t, u⟩⟩
&-E1 fst⟨s⟩
&-E2 snd⟨s⟩
⊕-I1 inl⟨t⟩
⊕-I2 inr⟨u⟩
⊕-E case s of inl⟨x⟩ → v; inr⟨y⟩ → w

!-I !t

!-E case s of !x→ u

32 / 58



Linear logic Linear haskell Conclusion

Outline

Linear logic
Intuitionistic logic
Intuitionistic terms
Linear logic
Linear terms

Linear haskell
Theory
Implementation in Haskell
Examples

Conclusion

33 / 58



Linear logic Linear haskell Conclusion

λq
→

λq
→ is the core calculus formalizing most of linear haskell. It

formalizes all key features.

34 / 58



Linear logic Linear haskell Conclusion

Multiplicity

λq
→ uses multiplicity (often denoted using π and µ) to deal with the

difference between linear and intuitionistic statements.
A multiplicity can be 1 (linear) or ω (intuitionistic) in normal linear
haskell.

35 / 58



Linear logic Linear haskell Conclusion

Contexts

Contexts (called “assumptions” before), are variables with
associated type and multiplicity:

Γ = x :µ A

is a context with a variable x of type A, which behaves like an
intuitionistic assumption if µ = ω, and like a linear assumption if
µ = 1.

36 / 58



Linear logic Linear haskell Conclusion

Arrow type

Arrow types now have a multiplicity: A→π B:
▶ If π = 1, the function must use A exactly once.
▶ If π = ω, there are no restrictions on how often the function

uses A.
Can sometimes say that the function takes π copies of A to
produce a B, or similar terminology.
We may write ⊸ for →1 and → for →ω.

For example, if we have f :: Int ⊸ Int, then f x = 2 · x is valid, but
f x = x + x is not.
However, g :: Int→ Int with g x = x + x is valid.

37 / 58



Linear logic Linear haskell Conclusion

Arrow type

Arrow types now have a multiplicity: A→π B:
▶ If π = 1, the function must use A exactly once.
▶ If π = ω, there are no restrictions on how often the function

uses A.
Can sometimes say that the function takes π copies of A to
produce a B, or similar terminology.
We may write ⊸ for →1 and → for →ω.

For example, if we have f :: Int ⊸ Int, then f x = 2 · x is valid, but
f x = x + x is not.
However, g :: Int→ Int with g x = x + x is valid.

37 / 58



Linear logic Linear haskell Conclusion

Datatype declaration

Datatype declarations are of the form

data D p1, . . . , pn where
(
ck : A1 →π1 . . . Ank

→πnk
D
)m

k=1

This declares a datatype D parameterized over multiplicities
p1, . . . , pn.
There are m constructors ck, each with nk arguments.
Arguments of a constructor have a multiplicity, just like arguments
of a function. All arguments of multiplicity 1 are used exactly once
in the constructor, arguments of multiplicity ω can be used any
number of times.
All multiplicities πi must be among p1, . . . , pn.

38 / 58



Linear logic Linear haskell Conclusion

Judgement

The judgement Γ ⊢ t : A means that each linear assumption
(x :1 B) ∈ Γ is used exactly once to derive t : A.
Intuitionistic assumptions ((y :ω C)) have no restrictions on how
often they are used in deriving t : A.

39 / 58



Linear logic Linear haskell Conclusion

Multiplicity operations

Multiplicities can be added and multiplied:
▶ 1 + 1 = 1 + ω = ω + 1 = ω + ω = ω

▶ 1 · 1 = 1

▶ 1 · ω = ω · 1 = ω · ω = ω

40 / 58



Linear logic Linear haskell Conclusion

Context operations

Variables are still unique in contexts. Instead of concatenating
contexts, we now add them (the first applicable rule is used):
▶ (x :π A,Γ ) + (x :µ A,∆) = x :π+µ A, (Γ +∆)

▶ (x :π A,Γ ) +∆ = x :π A, (Γ +∆)

▶ () +∆ = ∆

We can scale contexts with multiplicities:
▶ π(x :µ A,Γ ) = x :πµ A, πΓ

41 / 58



Linear logic Linear haskell Conclusion

Example: variable rule

var
ωΓ + x :1 A ⊢ x : A

The assumptions in Γ are not used exactly once to derive x : A, so
they must all have multiplicity ω.
In linear logic, x :ω A ⊢ x : A had its own rule ([Id]). In λq

→, it is
an instance of the same rule: if Γ = (x :1 A), the context becomes
ω(x :1 A) + (x :1 A) = (x :ω A) + (x :1 A) = x :ω A.

42 / 58



Linear logic Linear haskell Conclusion

Example: abstraction rule

Γ, x :π A ⊢ t : B
abs

Γ ⊢ λπ(x : A).t : A→π B

If we need π copies of x to derive t, then we can make a function
that uses π copies of x and makes a t.

43 / 58



Linear logic Linear haskell Conclusion

Example: application rule

Γ ⊢ t : A→π B ∆ ⊢ u : A app
Γ + π∆ ⊢ t u : B

We need π copies of u, which we can derive if we have π copies of
∆.

44 / 58



Linear logic Linear haskell Conclusion

Arrow type: example

Suppose we have a function f :: s ⊸ t. Then, we can define a
function g :: s→ t as g x = f x.

Γ ⊢ f : s→1 t
var

x :ω s ⊢ x : s app
Γ, x :ω s ⊢ f x : t

abs
Γ ⊢ λω(x : s).f x : s→ω t

So any linear function can be turned into an intuitionistic one, but
not vice versa.

Linear arrow types are not more restrictive, just more expressive
(they give guarantees about how they use their arguments).

45 / 58



Linear logic Linear haskell Conclusion

Arrow type: example

Suppose we have a function f :: s ⊸ t. Then, we can define a
function g :: s→ t as g x = f x.

Γ ⊢ f : s→1 t
var

x :ω s ⊢ x : s app
Γ, x :ω s ⊢ f x : t

abs
Γ ⊢ λω(x : s).f x : s→ω t

So any linear function can be turned into an intuitionistic one, but
not vice versa.

Linear arrow types are not more restrictive, just more expressive
(they give guarantees about how they use their arguments).

45 / 58



Linear logic Linear haskell Conclusion

Outline

Linear logic
Intuitionistic logic
Intuitionistic terms
Linear logic
Linear terms

Linear haskell
Theory
Implementation in Haskell
Examples

Conclusion

46 / 58



Linear logic Linear haskell Conclusion

A bit more formal

If the application of a function to an argument is consumed exactly
once, then that argument must be consumed exactly once.

To consume exactly once means:
▶ For an atomic base type (like Int or Ptr), to evaluate it.
▶ For a function value, to apply it to one argument and consume

its result exactly once.
▶ For an algebraic datatype, to pattern-match on it, and

consume all its linear components exactly once.

47 / 58



Linear logic Linear haskell Conclusion

A bit more formal: example

Suppose we have f :: [Int] ⊸ [Int], defined as f xs = repeat 1 ++ xs.
This seems invalid, it will never consume xs.
However, only if the application of this function to a variable is
consumed exactly once do we have that xs must be consumed
exactly once.

48 / 58



Linear logic Linear haskell Conclusion

Linear datatypes

We can define pairs either as a ⊸ b ⊸ (a, b), or as a→ b→ (a, b).
The constructor consumes each argument once. Making this
explicit is the cleanest choice.

Every intuitionistic function using or constructing a pair will
continue to work if we replace Haskell’s pair constructor with the
linear one: only if we guarantee to consume the pair exactly once
do we need to consume the elements of the pair exactly once.

Linear functions with a linear pair as argument provide an
additional guarantee: they use each element exactly once. This is
crucial for storing linear values (such as mutable arrays, which we
will see soon) in a pair.

All of the above also holds for lists.

49 / 58



Linear logic Linear haskell Conclusion

Linear datatypes

We can define pairs either as a ⊸ b ⊸ (a, b), or as a→ b→ (a, b).
The constructor consumes each argument once. Making this
explicit is the cleanest choice.

Every intuitionistic function using or constructing a pair will
continue to work if we replace Haskell’s pair constructor with the
linear one: only if we guarantee to consume the pair exactly once
do we need to consume the elements of the pair exactly once.

Linear functions with a linear pair as argument provide an
additional guarantee: they use each element exactly once. This is
crucial for storing linear values (such as mutable arrays, which we
will see soon) in a pair.

All of the above also holds for lists.

49 / 58



Linear logic Linear haskell Conclusion

Linear datatypes

We can define pairs either as a ⊸ b ⊸ (a, b), or as a→ b→ (a, b).
The constructor consumes each argument once. Making this
explicit is the cleanest choice.

Every intuitionistic function using or constructing a pair will
continue to work if we replace Haskell’s pair constructor with the
linear one: only if we guarantee to consume the pair exactly once
do we need to consume the elements of the pair exactly once.

Linear functions with a linear pair as argument provide an
additional guarantee: they use each element exactly once. This is
crucial for storing linear values (such as mutable arrays, which we
will see soon) in a pair.

All of the above also holds for lists.

49 / 58



Linear logic Linear haskell Conclusion

Unrestricted datatype

data Unrestricted a where { Unrestricted :: a→ Unrestricted a }

Let us distinguish two cases:
▶ Unrestricted a is consumed exactly once
▶ Unrestricted a is consumed an arbitrary number of times

In both cases, a is consumed an arbitrary number of times, and can
therefore not be a linear argument.

50 / 58



Linear logic Linear haskell Conclusion

Outline

Linear logic
Intuitionistic logic
Intuitionistic terms
Linear logic
Linear terms

Linear haskell
Theory
Implementation in Haskell
Examples

Conclusion

51 / 58



Linear logic Linear haskell Conclusion

Safe mutable arrays

“Mutable” means that something can be modified (“mutated”).
Haskell implements immutable arrays as follows:

array :: Int→ [(Int, a)]→ Array a
array size pairs = runST
(do {ma← newMArray size

; forM_ pairs (write ma)
; unsafeFreeze ma})

An array of some size is created, then filled with (index, value)
pairs, and then frozen to make it immutable.

This approach has some undesirable properties:
▶ Safe freezing requires copying the array, which would be slow.

Instead, the programmer is obligated to not mutate the array
after freezing.

▶ We need to use the ST monad, which is overly sequential.

52 / 58



Linear logic Linear haskell Conclusion

Safe mutable arrays

“Mutable” means that something can be modified (“mutated”).
Haskell implements immutable arrays as follows:

array :: Int→ [(Int, a)]→ Array a
array size pairs = runST
(do {ma← newMArray size

; forM_ pairs (write ma)
; unsafeFreeze ma})

An array of some size is created, then filled with (index, value)
pairs, and then frozen to make it immutable.
This approach has some undesirable properties:
▶ Safe freezing requires copying the array, which would be slow.

Instead, the programmer is obligated to not mutate the array
after freezing.

▶ We need to use the ST monad, which is overly sequential.
52 / 58



Linear logic Linear haskell Conclusion

Safe mutable arrays

newMArray :: Int→ (MArray a ⊸ Unrestricted b)⊸ b
write :: MArray a ⊸ (Int, a)→ MArray a
read :: MArray a ⊸ Int→ (MArray a,Unrestricted a)
freeze :: MArray a ⊸ Unrestricted (Array a)

Then we can define array as follows:
array size pairs = newMArray size (λma ⊸ freeze (foldl write ma pairs))

This is safe because:
▶ newMArray creates only 1 MArray.
▶ This MArray must be used as a linear argument, so it cannot

be copied.
▶ The MArray cannot be returned (b must be Unrestricted).
▶ Freezing the MArray consumes it.

53 / 58



Linear logic Linear haskell Conclusion

Safe mutable arrays

newMArray :: Int→ (MArray a ⊸ Unrestricted b)⊸ b
write :: MArray a ⊸ (Int, a)→ MArray a
read :: MArray a ⊸ Int→ (MArray a,Unrestricted a)
freeze :: MArray a ⊸ Unrestricted (Array a)

Then we can define array as follows:
array size pairs = newMArray size (λma ⊸ freeze (foldl write ma pairs))

This is safe because:
▶ newMArray creates only 1 MArray.
▶ This MArray must be used as a linear argument, so it cannot

be copied.
▶ The MArray cannot be returned (b must be Unrestricted).
▶ Freezing the MArray consumes it.

53 / 58



Linear logic Linear haskell Conclusion

Safe mutable arrays

Benefits:
▶ No more ST monad, so more parallelism.
▶ More library code is statically typechecked (freeze), less

obligation for the programmer.

54 / 58



Linear logic Linear haskell Conclusion

Linear input/output

Traditional file I/O in Haskell is defined as follows:

type File
openFile :: FilePath→ IO File
readLine :: File→ IO ByteString
closeFile :: File→ IO ()

This does not prevent reading from a closed file, or not closing a
file at all.

55 / 58



Linear logic Linear haskell Conclusion

Linear input/output

Traditional file I/O in Haskell is defined as follows:

type File
openFile :: FilePath→ IO File
readLine :: File→ IO ByteString
closeFile :: File→ IO ()

This does not prevent reading from a closed file, or not closing a
file at all.

55 / 58



Linear logic Linear haskell Conclusion

Linear input/output

Traditional file I/O in Haskell is defined as follows:
type File
openFile :: FilePath→ IO File
readLine :: File→ IO ByteString
closeFile :: File→ IO ()

Linear file I/O is fairly similar:
type File
openFile :: FilePath→ IOL 1 File
readLine :: File ⊸ IOL 1 (File,Unrestricted ByteString)
closeFile :: File ⊸ IOL ω ()

The IO monad now contains information about whether the value
should be used linearly or not, solving the aforementioned issues.
But how?

56 / 58



Linear logic Linear haskell Conclusion

Linear input/output

Traditional file I/O in Haskell is defined as follows:
type File
openFile :: FilePath→ IO File
readLine :: File→ IO ByteString
closeFile :: File→ IO ()

Linear file I/O is fairly similar:
type File
openFile :: FilePath→ IOL 1 File
readLine :: File ⊸ IOL 1 (File,Unrestricted ByteString)
closeFile :: File ⊸ IOL ω ()

The IO monad now contains information about whether the value
should be used linearly or not, solving the aforementioned issues.
But how?

56 / 58



Linear logic Linear haskell Conclusion

Linear input/output

Since monads have an explicit continuation, we can say whether
this continuation must be a linear function. The IOL monad is
defined as follows:

type IOL p a
returnIOL :: a→p IOL p a
bindIOL :: IOL p a ⊸ (a→p IOL q b)⊸ IOL q b

57 / 58



Linear logic Linear haskell Conclusion

Conclusion

We have seen linear logic, how it relates to intuitionistic logic, and
how it is applied to a programming language to be used in practice.

58 / 58


	Linear logic
	Intuitionistic logic
	Intuitionistic terms
	Linear logic
	Linear terms

	Linear haskell
	Theory
	Implementation in Haskell
	Examples

	Conclusion

