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• Discrete-time stochastic process

• State space S, time horizon T

• Transition probabilities P

• Markov Chain when P only depends on the current state.

Markov Chains
Introduction



• Markov Chain, but with an action space A

• Pij now depends on the chosen action as well

• Each state-action pair has a reward rs,a

• Choose actions based on a policy π

• Stationary policy:

• Deterministic when 

Markov Decision Process (MDP)
Introduction



• We now have rewards (second label on edge)

• We have wait and repair as actions

• Pij when choosing wait:

MDP Example
Introduction

• Pij when choosing repair:



• Computing the optimal policy

• How to deal with infinite time horizon?

• Discounted vs average reward:

• A policy π is Blackwell optimal if it is optimal for all λ close enough to 1

• These are also optimal policies for the average reward counterpart.

• We will use discounted reward for the rest of the talk

Bellman Equations
Introduction
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• The probabilities are now uncertain, picked from an uncertainty set

• Knowing exact probabilities is hard when deriving from data

• (P3,3 = 1 – P3,2 – P3,1)

• Pij when choosing repair:

Robust MDPs
Introduction

• P3 when choosing repair:



• The probabilities are now uncertain, picked from an uncertainty set

• Knowing exact probabilities is hard when deriving from data

• We consider the worst-case probabilities

• Adversary MDP: Second player that controls the factor matrix that tries to minimize our reward

• Two-player game of (normal) MDPs. 

Robust MDPs
Introduction



• Generally, it is NP-hard to compute optimal policy

• Independence assumptions are needed: this is rectangularity

• Neglecting constraints only makes the worst-case worse.

Rectangularity
Introduction



• (s,a)-rect: Each P can be chosen from the uncertainty set independently of others

• Optimal policy that is stationary and deterministic, and can be computed efficiently

• s-rect: Probs may be dependent on probs for different actions in the same state. Still independent 
between states.

• Here the optimal policy is stationary but may not be deterministic

(s,a)-rectangularity, s-rectangularity
Introduction



• (s,a)-rect: Each P can be chosen from the uncertainty set independently of others

• s-rect: Probs may be dependent on probs for different actions in the same state.

• Pij when choosing repair:

(s,a)-rectangularity, s-rectangularity
Introduction

• P3 when choosing repair:



• Introduce a new type of rectangularity

• Min-max duality:

• Algorithm to compute the optimal policy

• Blackwell optimality

Paper 1: Main Contributions
Robust Markov Decision Process: Beyond Rectangularity



• Idea: common underlying factors (healthcare)

• Fixed Coefficients u, factors w themselves are uncertain

• Each factor is a probability distribution over the next state

• r is not the reward!

A new type of uncertainty set
Paper 1: R-rectangularity



• r-rectangularity: when the factors are independent

• (s,a)-rect → r-rect

• s-rect and r-rect not related

A new type of rectangularity
Paper 1: R-rectangularity



• Used in most results of the rest of the paper

• The uncertainty sets need to be convex compact.

• Compact: closed and bounded

• Convex: Every line segment is contained in the set

Assumption 2.4
Paper 1: R-rectangularity



• Adversary MDP: r States, S actions, W is the policy

• Bellman equation of this adversary gives us value function β for the adversary: 

• R-rect is necessary to allow the adversary to independently optimize each vector.

Adversary MDP
Paper 1: Evaluating a policy



• Lemma 4.1: If      is r-rectangular and the sets                     are convex compact, there exists a stationary, 
deterministic optimal policy.

• Duality Theorem:

• Result:                is an equilibrium in the two-player game.

• Does not hold for s-rectangular uncertainty sets. 

Theorem of Duality
Paper 1: Min-Max Duality



• Maximum principle: the optimal policy attains the highest value regardless of starting state.

• Robust equivalent:

• Follows from the Duality Theorem

Robust Maximum Principle
Paper 1: Blackwell Optimality



• Recall: A policy π is Blackwell optimal if it is optimal for all λ close enough to 1

• Proven for r-rect sets with finitely many extreme points.

• Proof idea: both W and Π have finitely many extreme points.

• Extreme point: A point which does not lie in any open line segment joining two points in the set.

Blackwell Optimality
Paper 1: Blackwell Optimality



• So, we can construct:

• By contradiction, suppose we can also construct:

• Take to be optimal for all 

• Since not optimal, we can find:

• Continuous, rational function that takes on the value 0 an infinite number of times:

Proof of Blackwell Optimality
Paper 1: Blackwell Optimality



• This proof works for any λ!  

• We conclude the following proposition:

Proposition 6.3
Paper 1: Blackwell Optimality



• Algorithm to compute the optimal policy:

• Numerical Experiments

• Conclusion: R-rectangularity outperforms s-rectangularity

The rest of the paper
Paper 1



• Average optimality for RMDPs

• Blackwell optimality for RMDPs

• Algorithms to compute the optimal 
average reward

• Numerical experiments 

• Does not talk about r-rect.

Paper 2: Summary
Beyond discounted returns: Robust Markov decision processes with average and Blackwell optimality



• Less assumptions made than in previous work

• Again, uncertainty set is assumed to be convex, compact.

• Adversary MDP makes the problem similar to stochastic games

• However, the adversary is restricted to stationary policies

Motivation
Paper 2: Introduction



• Reminder: A policy π is Blackwell optimal if it is optimal for all discount factors close enough to 1

• ϵ-Blackwell optimality:

• Normalised and a difference of ϵ is allowed

Introduction
Paper 2: Blackwell optimality



• Based on two distinct sets                           , of which the boundaries intersect infinitely often.

• However: we can find a policy that is ϵ-Blackwell optimal for every ϵ > 0:

General (s,a)-rect uncertainty sets
Paper 2: Blackwell optimality



• A subset of         is definable if it is of the form:

• A function , is definable if its graph is definable:

• Intuitively, a set is definable if it is constructed based on polynomials, the exponential function, and 
canonical projections (elimination of variables).

• Simple example:

Definability
Paper 2: Definability



Definability
Paper 2: Definability



• They can have infinitely many extreme points but are definable!

An example
Paper 2: Definability



• Proof based on 

Definable (s,a)-rect uncertainty sets
Paper 2: Blackwell optimality



• So, we can construct:

• By contradiction, suppose we can also construct:

• Take to be optimal for all 

• Since not optimal, we can find:

• Continuous, rational function that takes on the value 0 an infinite number of times:

Proof of Blackwell Optimality
Paper 1: Blackwell Optimality



• Blackwell optimal policies also average optimal

• Algorithms to compute the optimal gain, but not the actual policies

• No polynomial-time algorithm known for (s,a)-rect RMDPs.

• Experiments on the newly defined algorithms.

The rest of the paper: average optimality results
Paper 2



Questions?



• To solve:

• Inf is used instead of min because it might not exist

Introduction
Paper 2: Average optimality



• The optimal policy is stationary and deterministic:

• Strong duality also holds.

• From these results, it also follows that:

• So we can justifiably restrict the Adversary to stationary policies

(s,a)-rectangular uncertainty sets
Paper 2: Average optimality



• History-dependent policies may be optimal

• Not true for discounted s-rect, or avg (s,a)-rect!

S-rectangular uncertainty sets
Paper 2: Average optimality



• Under Assumption 2.4, if r-rect, there exists an optimal stationary policy

• Proven using the duality result of later in the paper.

Proposition 2.5
Paper 1: R-rectangularity



• 4.1: Under Assumption 2.4, if r-rect, there exists an optimal stationary, deterministic policy

• This is the (unique) solution to the Bellman equation of the adversary

• So it suffices to show that

Lemma’s 4.1 and 4.3
Paper 1: Min-Max Duality



• To proof: 

• Bellman equation for the decision maker:

Proof of 4.3
Paper 1: Min-Max Duality



Theorem 4.2: Proof
Paper 1: Min-Max Duality

• Equivalent to:

• Proof:



• By substitution of:

• So, these two are equivalent:

Theorem 5.1
Paper 1: Section 5



• Test 1: Machine replacement problem 

• Conclusion: R-rect performs better than s-rect.

Testing
Paper 1: Numerical Experiments



• Test 2: Inspired by healthcare

• Conclusion: Worst-case performance is actually worse, but average isn’t!

Testing
Paper 1: Numerical Experiments
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