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Formalization

Definition
A Labelled Transition System or LTS L = (S ,Act,→) is:

a finite set of states S

a finite set of action labels Act

a transition relation →⊆ S × Act × S

We write s
a−→ s ′ when (s, a, s ′) ∈→

Computing minimal distinguishing Hennessy-Milner formulas is NP-hard,
but variants are tractable Jan Martens, Jan Friso Groote
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Equivalence
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Bisimulation

Definition
Given an LTS L = (S ,Act,→), a relation R ⊆ S × S is called a
bisimulation relation iff for all s, t ∈ S such that sRt holds, it also
holds for all actions a ∈ Act that:

if s
a−→ s’, then there is t ′ ∈ S such that t

a−→ t’ and s ′Rt ′

if t
a−→ t’, then there is s ′ ∈ S such that s

a−→ s’ and s ′Rt ′
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We say s is bisimilar to t, denoted s t if there is such a relation
R with sRt

Modeling and Analysis of Communicating Systems Jan Friso Groote,
Mohammed Reza Mousavi
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Hennessy-Milner Logic

Higher level way to talk about states
Formulas that capture the behavior of a state

Definition
For a ∈ Act a label, we define the Hennessy-Milner Logic:

ϕ ::= tt | ¬ϕ | ϕ1 ∧ ϕ2 | ⟨a⟩ϕ

For s ∈ S , we write s |= ϕ if ϕ holds in s:

True s |= tt always holds
Negations s |= ¬ϕ iff s ̸|= ϕ
Conjunctions s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2
Observations s |= ⟨a⟩ϕ iff ∃s ′ ∈ S such that s

a−→ s’ and s ′ |= ϕ
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Hennessy-Milner Logic

Hennessy-Milner Theorem

Given an LTS L = (S ,Act,→) and two states s, t ∈ S , we have:

s t ⇐⇒ ∀ϕ ∈ HML, s |= ϕ↔ t |= ϕ

On Observing Nondeterminism and Concurrency Matthew Hennessy and
Robin Milner
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Distinguishing Formulas

Corollary

s t ⇐⇒ ∃ϕ ∈ HML such that s |= ϕ and t ̸|= ϕ

This ϕ is called the distinguishing formula
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Size

Definition
We inductively define the size of a formula in HML

|tt| = 0

|⟨a⟩ϕ| = |ϕ|+ 1

|¬ϕ| = |ϕ|
|ϕ1 ∧ ϕ2| = |ϕ1|+ |ϕ2|

Intuitively: count the number of observations in the whole formula
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Computing minimal size distinguishing formulas

Given an LTS L = (S ,Act,→) and two states s, t ∈ S

MIN-DIST

There is a formula ϕ ∈ HML with less observations than |S | such
that ϕ distinguishes s and t, and |ϕ| ≤ ℓ for some ℓ ∈ N

This decision problem is NP-hard

Reduction from CNF-SAT

NP-complete depending on representation of ϕ
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Observation Depth

Definition
We inductively define the observation-depth of a formula in HML

d⋄(tt) = 0

d⋄(⟨a⟩ϕ) = d⋄(ϕ) + 1

d⋄(¬ϕ) = d⋄(ϕ)

d⋄(ϕ1 ∧ ϕ2) = max(d⋄(ϕ1), d⋄(ϕ2))

Intuitively: the largest number of nested observations
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k-bisimilarity

Definition
Given an LTS L = (S ,Act,→) and k ∈ N, k-bisimilarity, denoted

l , is defined inductively:

0 = {(s, t) | s, t ∈ S}

k = {(s, t) | ∀ s a−→ s’∃ t a−→ t’ such that s ′ k−1 t ′ and

∀ t a−→ t’∃ s a−→ s’ such that t ′ k−1 s ′}

We can prove =
⋂

k∈N k

Computing minimal distinguishing Hennessy-Milner formulas is NP-hard,
but variants are tractable Jan Martens, Jan Friso Groote
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Deltas

Definition
Define the minimal observation depth ∆ : S × S → N ∪∞ by

∆(s, t) =

{
i if s i t and s i−1 t

∞ if s t

Define a function δi that gives the set of witnesses of this minimal
observation depth, i.e. of s and t being i-distinguishable.

δi (s, t) = {(a, s ′)| s a−→ s’ and ∀ t a−→ t’,∆(s ′, t ′) ≤ i − 1}

Computing minimal distinguishing Hennessy-Milner formulas is NP-hard,
but variants are tractable Jan Martens, Jan Friso Groote
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Algorithm 1: Minimal observations

Input: Two states s, t ∈ S such that s t
Output: A HM-formula ϕ such that s |= ϕ and t ̸|= ϕ
1: function ϕ(s, t)
2: i := ∆(s, t)
3: if δi (s, t) = ∅ then
4: return ¬ϕ(t, s)
5: Select (a, s ′) ∈ δi (s, t)
6: T := {t ′ | t a−→ t ′} ▷ ∆(s ′, t ′) ≤ i − 1
7: return ⟨a⟩

(∧
t′∈T ϕ(s

′, t ′)
)

8: end
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Optimization: Removing unnecessary conjuncts

6: T := {t ′ | t a−→ t ′}
7: return ⟨a⟩

(∧
t′∈T ϕ(s

′, t ′)
)

We create a distinguishing formula between each t ′ ∈ T and s ′

One formula can be a distinguishing formula for multiple t ′

So, after each recursive call, check whether the formula holds for
the other t ′ and remove unnecessary conjuncts

6: T := {t ′ | t a−→ t ′}
7: while T ̸= ∅ do
8: Select tmax ∈ T s.t. ∆(s, tmax) ≥ ∆(s, t ′) ∀t ′ ∈ T
9: ϕtmax := ϕ(s, tmax)

10: Φ := Φ ∧ ϕtmax

11: T := {t ′ ∈ T | t ′ |= ϕtmax}
12: return ⟨a⟩Φ
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Silent steps

Definition
We introduce the internal or silent transition τ

In the definition of the LTS we change Act ⇒ Act ∪ {τ} = Actτ

We write
τ

−−−↠ for zero or more combined τ steps and
(a)−−→ for zero

or one a steps.

Are these strongly bisimilar?
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Branching Bisimulation

Definition
Given an LTS L = (S ,Actτ ,→). A symmetric relation R ⊆ S × S
is called a branching bisimulation, iff for all sRt and s

a−→ s ′, either

there are t ′, t ′′ ∈ S such that t
τ

−−−↠ t ′
a−→ t ′′, sRt ′, and s ′Rt ′′

a = τ and s ′Rt
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Two states s, t ∈ S are said to be branching bisimilar, written as
s b t, iff there is a branching bisimulation R such that sRt.

Minimal Depth Distinguishing Formulas Without Until for Branching
Bisimulation Jan Martens, Jan Friso Groote
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Branching Apartness

We want something like

s b t ⇐⇒ s # t

Definition
Like k-bisimilarity, we define inductively a relation #i . Let #0 = ∅
and s #i+1 t if either:

s #i t

there is a path s
τ

−−−↠ s ′
a−→ s ′′ such that for all paths

t
τ

−−−↠ t ′
(a)−−→ t ′′ either s ′ #i t

′ or s ′′ #i t
′′

symmetrically, there is a path t
τ

−−−↠ t ′
a−→ t ′′ such that for all

paths s
τ

−−−↠ s ′
(a)−−→ s ′′ either t ′ #i s

′ or t ′′ #i s
′′

We define the branching apartness relation # ⊆ S × S by
# =

⋃
i∈N #i
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Hennessy-Milner Logic without Until

Definition
Adapting HML for branching bisimulation, we restrict ourselves to
formulas of the shape:

ϕ ::= tt | ¬ϕ | ϕ1 ∧ ϕ2 | ⟨τ∗⟩(⟨a⟩ψ ∧ ϕ)

Here a ∈ Act ∪ {τ̂}, where ⟨τ̂⟩ϕ := ⟨τ⟩ϕ ∨ ϕ
We call this Hennessy-Milner Logic without Until, or HMLU
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A Hennessy-Milner Theorem

A Hennessy-Milner Theorem

Given an LTS L = (S ,Actτ ,→) and two states s, t ∈ S , we have:

s b t ⇐⇒ ∀ϕ ∈ HMLU, s |= ϕ↔ t |= ϕ
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Distinguishing Formulas

We now have:

s # t ⇐⇒ ∃ϕ ∈ HMLU, s |= ϕ ∧ t ̸|= ϕ

And also:

s #i t ⇐⇒ ∃ϕ ∈ HMLU with d⋄(ϕ) = i , s |= ϕ ∧ t ̸|= ϕ

Theorem 12. Minimal Depth Distinguishing Formulas Without Until for
Branching Bisimulation Jan Martens, Jan Friso Groote
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Deltas for Branching Bisimulation

We again need the minimal observation depth and suitable
witnesses

∆(s, t) =

{
i if s #i t and ¬(s #i−1 t)

∞ otherwise

δi (s, t) = {(a, s ′, s ′′)| s
τ

−−−↠ s ′
a−→ s ′′ and ∀t

τ
−−−↠ t ′

a−→ t ′′,

it holds that t ′ #i−1 s ′ or t ′′ #i−1 s ′′}
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Algorithm 2: Minimal Depth for Branching Bisimulation

Input: Two states s, t ∈ S such that s # t.
Output: A formula ϕ ∈ HMLU such that s |= ϕ and t ̸|= ϕ.
1: function ϕ(s, t)
2: i := ∆(s, t)
3: if δi (s, t) = ∅ then
4: return ¬ϕ(t, s)
5: Select (a, s ′, s ′′) ∈ δi (s, t)
6: â := τ̂ if a = τ
7: â := a otherwise
8: Tτ := {t ′ | t

τ
−−−↠ t ′}

9: T := {t ′′ | t ′ ∈ Tτ , t
′ (a)−−→ t ′′ and t ′′ #i−1 s ′′}

10: ΦT := Dist(s ′′,T )
11: Tτ := {t ∈ Tτ | t |= ⟨â⟩ΦT}
12: ΦTτ

:= Dist(s ′,Tτ )
13: return ⟨τ∗⟩(⟨â⟩ΦT ∧ ΦTτ )
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Algorithm 3: Removing unnecessary conjuncts

Input: a state s ∈ S , a set T ⊆ S such that s # t for all t ∈ T .
Output: a formula ϕ ∈ HMLU s.t. s |= ϕ and ∀t ∈ T , t ̸|= ϕ.
1: function Dist(s,T )
2: while T ̸= ∅ do
3: Select tmax ∈ T s.t. ∆(s, tmax) ≥ ∆(s, t ′) ∀t ′ ∈ T
4: ϕtmax := ϕ(s, tmax)
5: Φ := Φ ∧ ϕtmax

6: T := {t ′ ∈ T | t ′ |= ϕtmax}
7: return Φ
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Proof MIN-DIST NP-Hard

Given an LTS L = (S ,Act,→) and two states s, t ∈ S

MIN-DIST

There is a formula ϕ ∈ HML with less observations than |S | such
that ϕ distinguishes s and t, and |ϕ| ≤ l for some l ∈ N
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Proof MIN-DIST NP-Hard

Theorem

Given a CNF formula C = C1 ∧ ... ∧ Cn with propositions
p1, ..., pk we construct an LTS such that there is a distinguishing
formula ϕ ∈ HML between s and t with |ϕ| ≤ k + 2 if and only if
C is satisfiable.
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Proof MIN-DIST NP-Hard

Figure: The LTS for the formula C = (¬p1 ∨ ¬p2) ∧ (p2 ∨ p3)
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Representation

It can be shown that there is an exponential lower bound on the
size of the minimal distinguishing formula. MIN-DIST is therefore
not in NP. If we change the representation, a polynomial witness
does exist.

For example, for the term ⟨a⟩⟨b⟩⟨c⟩tt ∧ ⟨b⟩⟨c⟩tt
Equations:

ϕ1 = ⟨a⟩ϕ2 ∧ ϕ2
ϕ2 = ⟨b⟩⟨c⟩tt

Shared Term:

⟨a⟩

  
∧

??

// ⟨b⟩ // ⟨c⟩ // tt
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Hennessy-Milner Logic with Until

Adapting HML for branching bisimulation, we introduce the Until

Definition

s |= ϕ⟨a⟩ψ ⇐⇒ there is s
τ

−−−↠ s ′
a−→ s ′′ such that in

all states from s to s ′, ϕ holds and s ′′ |= ψ

We define:

ϕ ::= tt | ϕ⟨a⟩ψ | ¬ϕ | ϕ1 ∧ ϕ2

Until ϕ⟨a⟩ψ
Negations ¬ϕ
Conjunctions ϕ1 ∧ ϕ2
tt always holds
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Partition Refinement

How do we obtain ∆ and δi? Via a partition refinement algorithm

For each a ∈ Act and other block B ′ split B into splita(B,B
′) and

B \ splita(B,B ′) where splita(B,B
′) = {s ∈ B | ∃s ′ ∈ B ′, s

a−→ s’}

−→ −→ −→ ...

0 1 2

For apartness, observe that s # t ⇐⇒ ∀B blocks, s /∈ B or t /∈ B
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Minimal Negation Depth

Definition
We inductively define the negation-depth of a formula in HML

d¬(tt) = 0

d¬(⟨a⟩ϕ) = d¬(ϕ)

d¬(¬ϕ) = d¬(ϕ) + 1

d¬(ϕ1 ∧ ϕ2) = max(d¬(ϕ1), d¬(ϕ2))

Intuitively: the largest number of nested negations
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Minimal Negation Depth

Combining observation (k) and negation depth (m)

Definition
We define m-nested k-similarity inclusion, denoted ⇝m

k , inductively.
For all s, t ∈ S we have s ⇝m

0 t. If s ⇝m
k t then

if s
a−→ s’ there is a t

a−→ t’ such that s ′ ⇝m
k−1 t

′

if m > 0 and t
a−→ t’, then there is a s

a−→ s’ such that
t ′ ⇝m−1

k−1 s ′
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Minimal Negation Depth

We again need the minimal depth and suitable witnesses (before:
∆ and δi )

−→
∆ i (s, t) =

{
j if s ̸⇝j

i t and s ⇝j−1
i t

∞ if s i t

δ̂ji (s, t) = {(a, s ′)| s a−→ s’ and

∀ t a−→ t’,∆(s ′, t ′) ≤ i − 1 and
−→
∆ i (s

′, t ′) ≤ j}
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Minimal Negation Depth

Input: Two states s, t ∈ S such that s i t for some i ∈ N
Output: A HM-formula ϕ such that d⋄(ϕ) = i , s |= ϕ and t ̸|= ϕ
1: function φi (s, t)

2: j :=
−→
∆ i (s, t)

3: X := δ̂ji (s, t)
4: if X = ∅ then
5: return ¬φi (t, s)

6: Select (a, s ′) ∈ X
7: T := {t ′ | t a−→ t ′}
8: while T ̸= ∅ do

9: Select tmax ∈ T s.t.
−→
∆ i−1(s

′, tmax) is maximal
10: φtmax := φi−1(s

′, tmax)
11: Φ := Φ ∪ {φtmax}
12: T := {t ′ ∈ T |t ′ |= ϕtmax}
13: return ⟨a⟩

∧
φ∈Φ φ
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