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What is Lean?

▶ A proof assistant
▶ Heavily used for formalizing mathematics

▶ Has an expansive library for mathematics: mathlib
▶ Constructive core, classical community
▶ CIC-like type theory

▶ Impredicative P
▶ No universe cumulativity
▶ Universe polymorphism
▶ Definitional proof irrelevance
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A small timeline

▶ Started in 2013 by Leonardo de Moura at Microsoft Research
▶ Lean 0.1 released in 2014
▶ Lean 2 (0.2) released in 2015

▶ Also allowed predicative P
▶ Started gathering interest
▶ Added support for HoTT

▶ Lean 3 released in 2017
▶ More user-friendly, extensible
▶ Removed support for HoTT
▶ Separate mathlib

▶ Lean 4 officially released in 2023
▶ More like a general-purpose language than previously
▶ Extensive macro processor, several kernel extensions
▶ Almost completely rewritten in Lean, kernel still in C++
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Trusting Verifying Lean

Several stages of enlightenment:
1. A proof assistant written in C++ (2014)
2. A full mathematical specification of the type theory
3. A consistency proof of the former (both 2019)
4. Only the kernel written in C++ (2023)
5. The kernel also written in Lean (2024) ← We are here!*

6. A mechanized version of the type theory
7. A soundness proof for the kernel
8. A mechanical proof of TT consistency**
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Mario Carneiro’s work

The Type Theory of Lean

Mario Carneiro

April 16, 2019

Abstract

This thesis is a presentation of dependent type theory with inductive types, a hierarchy of universes,
with an impredicative universe of propositions, proof irrelevance, and subsingleton elimination,
along with axioms for propositional extensionality, quotient types, and the axiom of choice. This
theory is notable for being the axiomatic framework of the Lean theorem prover. The axiom system
is given here in complete detail, including “optional” features of the type system such as let binders
and definitions. We provide a reduction of the theory to a finitely axiomatized fragment utilizing
a fixed set of inductive types (the W-type plus a few others), to ease the study of this framework.

The metatheory of this theory (which we will call Lean) is studied. In particular, we prove unique
typing of the definitional equality, and use this to construct the expected set-theoretic model, from
which we derive consistency of Lean relative to ZFC + {there are n inaccessible cardinals | n < ω}
(a relatively weak large cardinal assumption). As Lean supports models of ZFC with n inaccessible
cardinals, this is optimal.

We also show a number of negative results, where the theory is less nice than we would like.
In particular, type checking is undecidable, and the type checking as implemented by the Lean
theorem prover is a decidable non-transitive underapproximation of the typing judgment. Non-
transitivity also leads to lack of subject reduction, and the reduction relation does not satisfy the
Church-Rosser property, so reduction to a normal form does not produce a decision procedure for
definitional equality. However, a modified reduction relation allows us to restore the Church-Rosser
property at the expense of guaranteed termination, so that unique typing is shown to hold.
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Lean4Lean: Towards a formalized metatheory for
the Lean theorem prover
Mario Carneiro #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
In this paper we present a new “external verifier” for the Lean theorem prover, written in Lean
itself. This is the first complete verifier for Lean 4 other than the reference implementation in C++
used by Lean itself, and our new verifier is competitive with the original, running between 20%
and 50% slower and usable to verify all of Lean’s mathlib library, forming an additional step in
Lean’s aim to self-host the full elaborator and compiler. Moreover, because the verifier is written
in a language which admits formal verification, it is possible to state and prove properties about
the kernel itself, and we report on some initial steps taken in this direction to formalize the Lean
type theory abstractly and show that the kernel correctly implements this theory, to eliminate the
possibility of implementation bugs in the kernel and increase the trustworthiness of proofs conducted
in it. This work is still ongoing but we plan to use this project to help justify any future changes to
the kernel and type theory and ensure unsoundness does not sneak in through either the abstract
theory or implementation bugs.

2012 ACM Subject Classification Mathematics of computing→ Mathematical software performance;
Software and its engineering → Formal methods; Social and professional topics → Systems analysis
and design

Keywords and phrases Lean, proof assistant, external verifier, implementation, metatheory, type
theory, proof theory

Supplementary Material The formalization and implementation are available at https://github.
com/digama0/lean4lean/tree/itp2024.
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1 Introduction

Lean [7] is a theorem prover based on the Calculus of Inductive Constructions (CIC), quite
similar to its older brother Coq [3], but as the name suggests, one of the differentiating
aspects was the desire to make the kernel “leaner,” relying on simpler primitives while
retaining most of the power of the system. This was in particular informed by periodic news
of unsoundnesses in Coq1 due to complications of the many interacting features in the kernel.
So from the beginning, Lean advertised its simpler foundations and multiple external verifiers
as reasons that it would not suffer from the same troubles. These hopes were broadly upheld:
for the entire release history of Lean 3, there were no soundness bugs reported against the
kernel (written in C++), and our previous work [4] showed the consistency of Lean with
respect to ZFC with n inaccessible cardinals for all n < ω, so the soundness story was fairly
strong.

1 https://github.com/coq/coq/blob/master/dev/doc/critical-bugs.md
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Lean4Lean: Towards a Verified Typechecker for Lean,
in Lean
Mario Carneiro
marioc@chalmers.se

Chalmers University of Technology
University of Gothenburg

Gothenberg, Sweden

Abstract
In this paper we present a new “external checker” for the
Lean theorem prover, written in Lean itself. This is the first
complete typechecker for Lean 4 other than the reference
implementation in C++ used by Lean itself, and our new
checker is competitive with the original, running between
20% and 50% slower and usable to verify all of Lean’s math-
lib library, forming an additional step in Lean’s aim to self-
host the full elaborator and compiler. Moreover, because the
checker is written in a language which admits formal verifi-
cation, it is possible to state and prove properties about the
kernel itself, and we report on some initial steps taken in
this direction to formalize the Lean type theory abstractly
and express the relation between the kernel functions and
the type theory. We plan to use this project to help justify
any future changes to the kernel and type theory and ensure
unsoundness does not sneak in through either the abstract
theory or implementation bugs.

CCS Concepts: • Mathematics of computing→Mathe-
matical software performance; • Software and its en-
gineering→ Formal methods; • Social and professional
topics→ Systems analysis and design.

Keywords: Lean, proof assistant, external typechecker, im-
plementation, metatheory, type theory, proof theory

1 Introduction
Lean [9] is a theorem prover based on the Calculus of In-
ductive Constructions (CIC) [17], quite similar to its older
brother Coq [22], but as the name suggests, one of the ways
it sought to differentiate itself was the desire to make the
kernel “leaner,” relying on simpler primitives while retain-
ing most of the power of the system. This was in particu-
lar informed by periodic news of unsoundnesses in Coq1
due to complications of the many interacting features in the
kernel. So from the beginning, Lean advertised its simpler
foundations and multiple external checkers [11, 18] as rea-
sons that it would not suffer from the same troubles. These
hopes were broadly upheld: for the entire release history
of Lean 3, there were no soundness bugs reported against
the kernel (written in C++), and Carneiro [6] showed the
consistency of Lean with respect to ZFC with = inaccessible
1h�ps://github.com/coq/coq/blob/master/dev/doc/critical-bugs.md

cardinals for all = < l , so the soundness story seemed fairly
strong.
But times move on, and Lean 4 now exists as an (almost)

ground-up rewrite of Leanwith most components nowwrit-
ten in Lean itself. The kernel was one of the few components
that was not rewritten, but it was extended with various
features for performance reasons like bignum arithmetic,
nested inductive types, and primitive projections, and un-
fortunately some soundness bugs crept in during the pro-
cess and Lean’s record is no longer spotless. Another thing
that was lost during the port was the external checkers: the
whole metaprogramming infrastructure was redesigned so
old external checkers are no longer applicable to Lean 4.
While most of the new features can be treated as mere ab-
breviations, nested inductive types and [ for structures sig-
nificantly impact the theory, and as a result the soundness
proof from [6] is no longer directly applicable. (But see [23],
which covers some of these modifications.)

We interpret this as a cautionary tale: It is not sufficient to
see a prior system and hope to do better through sheer force
of will. We are all human, and mistakes in both the theory
and the implementation happen as a matter of course. The
way to do better is not to rewrite, but to set up a process
that structurally ensures that mistakes are either prevented
or corrected. For a proof assistant, there are threemainways
to do this: (1) testing, (2) independent reimplementation, and
(3) formal verification. Lean has a fairly robust test suite,
but testing helps more in the high-frequency low-impact do-
main; soundness bugs are rare and generally occur in areas
that are insufficiently tested because the developer did not
even consider the error condition.
The main contribution of this paper lies in (2): an inde-

pendent reimplementation. To restore the soundness story
of Lean to a satisfactory state, we believe it is necessary to
bring back the external checkers. And what better language
to do so than Lean itself? There are reasons not to use Lean
for a truly independent verifier (and more external checkers
are coming, in Swift2 and Rust3), but there are also advan-
tages to having a kernel written in Lean:
• The Lean elaborator is already written in Lean as a
formof “whitebox automation”: users are able tomake

2h�ps://github.com/gebner/trepplein
3h�ps://github.com/ammkrn/nanoda_lib
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A brief introduction: typing, definitional equality (§§ 2.1, 2.2)

Typing judgement: Γ ⊢ e : α Definitional equality: Γ ⊢ e ≡ e′

(these are just a select few rules)

conversion
Γ ⊢ e : α Γ ⊢ α ≡ β

Γ ⊢ e : β

transitivity
Γ ⊢ e1 ≡ e2 Γ ⊢ e2 ≡ e3

Γ ⊢ e1 ≡ e3

β-contraction
Γ, x : α ⊢ e : β Γ ⊢ e′ : α

Γ ⊢ (λx : α. e) e′ ≡ e[e′/x ]

proof irrelevance
Γ ⊢ p : P Γ ⊢ h : p Γ ⊢ h′ : p

Γ ⊢ h ≡ h′

6 / 39



Proof irrelevance

Say we define Σx : α. B(x) as follows:

α : Uℓ1 , β : α → Uℓ2 ⊢ sigαβ := µt : Umax(ℓ1,ℓ2,1). (exist : ∀x : α. β x → t)

▶ Now, say we let α := N, β := λx . x < 10.
▶ Then, e.g., existsig 5 h1 ≡ existsig 5 h2 by compatibility and proof irrelevance.
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A brief introduction: algorithmic equality (§ 2.3)

Definitional equality: Γ ⊢ e ≡ e′ vs. Algorithmic equality: Γ ⊢ e ⇔ e′

(these are just a select few rules)

transitivity
Γ ⊢ e1 ≡ e2 Γ ⊢ e2 ≡ e3

Γ ⊢ e1 ≡ e3
⇔ lacks an explicit transitivity rule

β-contraction
Γ, x : α ⊢ e : β Γ ⊢ e′ : α

Γ ⊢ (λx : α. e) e′ ≡ e[e′/x ]

reduction
e ⇝ k Γ ⊢ k ⇔ e′

Γ ⊢ e ⇔ e′
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Properties of Lean’s type theory

▶ Definitional equality is undecidable
▶ Algorithmic equality is not transitive, i.e.,

∃e1, e2, e3. e1 ⇔ e2 → e2 ⇔ e3 → e1 ̸⇔ e3

▶ Subject reduction fails in practice, i.e.,

∃e, e′. (Γ ⊩ e : α) → e ⇝ e′ → Γ ̸⊩ e′ : α

▶ Normalization fails, i.e.,

∃e. ¬∃e′. e ≡ e′ ∧ e′ ̸⇝βδι(ζη)
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Time for examples: undecidability of ≡

Three ingredients:
▶ Something that can unfold forever in an inconsistent context:

accessibility on a relation that is not well-founded (> on N)
▶ To control unfolding: a predicate P : N → 2 that is decidable,

but for which ∀n : N, P n is undecidable:
“Turing machine M runs for at least n steps without halting”

▶ A function that combines both
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Accessibility with < (WF)

acc< := µA : N → P. (intro : ∀x : N. (∀y : N. y < x → A y) → A x)

recacc : ∀C : N → Uu. (∀x : N. (∀y : N.y < x → acc< y) →
(∀y : N.y < x → C y) →
C x) →

∀n : N. acc< n → C n
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Accessibility with < (WF)

acc< := µA : N → P. (intro : ∀x : N. (∀y : N. y < x → A y) → A x)
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Accessibility with > (not WF)

acc> := µA : N → P. (intro : ∀x : N. (∀y : N. y > x → A y) → A x)
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Inversion on accessibility

▶ We can project out the second argument to intro using invx :

invx : acc x → ∀y : N. y < x → acc y

(invx is defined using recacc, but its exact definition is not that important)
▶ Additionally:

a ≡ introacc x (invx a) : acc x : P

proof irrelevance
Γ ⊢ p : P Γ ⊢ h : p Γ ⊢ h′ : p

Γ ⊢ h ≡ h′
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Three ingredients:
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✓
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but for which ∀n : N, P n is undecidable:
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✓
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Time for examples: undecidability of ≡

(recall a ≡ introacc x (invx a))

f : ∀n. acc> n → 1
f := recacc (λ_. 1) (λn _ (g : ∀y . y > x → 1).

if P n then g (n + 1) (p n) else ())

f n (introacc n h)⇝∗ if P n then f (n + 1) (h (n + 1) (p n)) else ()

f 0 a ≡ f 0 (introacc 0 (inv0 a))
≡ f 1 (inv0 a 1 (p 0))
≡ f 1 (introacc 1 (inv1 (inv0 a 1 (p 0)))
≡ f 2 (inv1 (inv0 a 1 (p 0)) 2 (p 1))
≡ . . .

a : acc> 0 ⊢ f 0 a ≡ () if and only if ¬∀n. P n
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Algorithmic equality is not transitive (1)

f 0 a ≡ f 0 (introacc 0 (inv0 a))
≡ f 1 (inv0 a 1 (p 0))
≡ f 1 (introacc 1 (inv1 (inv0 a 1 (p 0)))
≡ f 2 (inv1 (inv0 a 1 (p 0)) 2 (p 1))
≡ . . .

f 0 a ⇔ f 0 (introacc 0 (inv0 a))
⇔ f 1 (inv0 a 1 (p 0))
but

f 0 a ̸⇔ f 1 (inv0 a 1 (p 0))

f : ∀n. acc> n → 2
f := recacc (λ_. 2) (λn _ (g : ∀y . y > x → 2).

if P n then g (n + 1) (p n) else tt)

f n (introacc n h)⇝∗ if P n then f (n + 1) (h (n + 1) (p n)) else tt
16 / 39



Algorithmic equality is not transitive (2)

Also in a consistent context (a : acc< 1):

f 1 a ⇔ f 1 (introacc 1 (inv1 a))
⇔ f 0 (inv1 a 0 p′

0)
but

f 1 a ̸⇔ f 0 (inv1 a 0 p′
0)

f : ∀n. acc< n → 2
f := recacc (λ_. 2) (λn _ (g : ∀y . y < x → 2).

if P n then if h : n ̸= 0 then g (n − 1) (p′ n h) else tt else tt)

f n (introacc n h)⇝∗ if P n then if h : n ̸= 0 then f (n−1) (h (n−1) (p n h)) else tt else tt
17 / 39



Subject reduction fails in practice (1)

▶ So far, we have demonstrated lack of transitivity for inhabitants of B : U1.
▶ We can use the same strategy to synthesize ‘problematic’ types in a consistent

context:

φ : ∀n. acc< n → U1

φ := recacc (λ_. U1) (λn _ (g : ∀y . y < x → U1).
if P n then if h : n ̸= 0 then g (n − 1) (p′ n h) else N else N)

▶ We know that ∥acc< 1∥, so assume we have a : acc< 1 (a may not be transparent).
▶ Then define:

α := φ 1 a
β := φ 1 (introacc 1 (inv1 a))
γ := φ 0 (inv1 a 0 p′

0)

 so we have


α ⇔ β

⇔ γ

α ̸⇔ γ
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Subject reduction fails in practice (2)

▶ Let Γ ⊩ e : α denote the algorithmic typing judgement that Lean uses, like the
normal typing judgement, but using ⇔ instead of ≡ in the conversion rule.

▶ Recall Γ ⊢ α ⇔ β; β ⇔ γ; α ̸⇔ γ.
▶ We can prove that α, β, γ = N, so we can cast, e.g., 0 : N to 0 : γ. Assume

Γ ⊩ e : γ.
▶ Now:

Γ ⊩ idβ e : β, checks Γ ⊢ β ⇔ γ
Γ ⊩ idα (idβ e) : α, checks Γ ⊢ α ⇔ β
Γ ̸⊩ idα e : α, checks Γ ⊢ α ⇔ γ but Γ ⊢ α ̸⇔ γ

▶ But idα (idβ e) ⇔ idα e since idβ e ⇝ e.
▶ So Γ ⊩ idα (idβ e) : α and idα (idβ e) ⇔ idα e, but not Γ ⊩ idα e : α.

19 / 39



Subject reduction does not fail in theory

▶ As demonstrated here:

Γ ⊩ idα : ∀x : α. α

Γ ⊢ α ⇔ β Γ, x : α ⊢ α ⇔ α

Γ ⊢ ∀x : α. α ⇔ ∀x : β. α

Γ ⊩ idα : ∀x : β. α

Γ ⊩ e : γ Γ ⊢ β ⇔ γ

Γ ⊩ e : β

Γ ⊩ idα e : α

▶ Conclusion: Carneiro’s algorithmic type judgement is less strict than the one Lean
uses internally.

▶ This is totally fine as long as we consider an overapproximation of what Lean does.
▶ (This is actually not the case: Lean considers a, b : 1 : U1 ⊩ a ≡ b, but this may have

not been the case in Lean 3.)

20 / 39



Subject reduction does not fail in theory

▶ As demonstrated here:

Γ ⊩ idα : ∀x : α. α

Γ ⊢ α ⇔ β Γ, x : α ⊢ α ⇔ α

Γ ⊢ ∀x : α. α ⇔ ∀x : β. α

Γ ⊩ idα : ∀x : β. α

Γ ⊩ e : γ Γ ⊢ β ⇔ γ

Γ ⊩ e : β

Γ ⊩ idα e : α

▶ Conclusion: Carneiro’s algorithmic type judgement is less strict than the one Lean
uses internally.

▶ This is totally fine as long as we consider an overapproximation of what Lean does.
▶ (This is actually not the case: Lean considers a, b : 1 : U1 ⊩ a ≡ b, but this may have

not been the case in Lean 3.)

20 / 39



Abel & Coquand nontermination proof

▶ Type theories with proof irrelevance and impredicative P lose strong normalization.
▶ Lean falls into this category.
▶ So does Coq with SProp, as long as you enable definitional UIP.

▶ Two variants:
1. using the absurdity that all propositions are equal, and
2. using (weak) propositional extensionality.
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Abel & Coquand nontermination proof: exhibit A

Set Definitional UIP.

Inductive seq {A} (a : A) : A → SProp :=
srefl : seq a a.

Definition cast (A B : Prop) (e : seq A B) (x : A) : B :=
match e with srefl _ ⇒ x end.

Definition False : Prop := ∀ A : Prop, A.
Definition Not (A : Prop) := A → False.
Definition True : Prop := Not False.

Definition δ : True := λ z : False, z True z : False.
Definition ω (h : ∀ A B : Prop, seq A B) : False :=

λ A : Prop, cast True A (h True A) δ : A.
Definition Ω (h : ∀ A B : Prop, seq A B) : False :=

δ (ω h).

Fail Timeout 1 Eval lazy in Ω.

cast A A e x ⇝δβι x

Ω h ⇝δβ δ (ω h)
⇝δβ ω h ⊤ (ω h)
⇝δβ cast ⊤ ⊤ (h ⊤ ⊤) δ (ω h)
⇝δβι δ (ω h)
⇝δβ Ω h

22 / 39



Abel & Coquand nontermination proof: exhibit B

Set Definitional UIP.

Inductive seq {A} (a : A) : A → SProp :=
srefl : seq a a.

Axiom tautext : ∀ (A B : Prop), A → B → seq A B.

Definition True : Prop := ∀ A : Prop, A → A.

Definition cast (A B : Prop) (eq : seq A B) (x : A) : B :=
match eq with srefl _ ⇒ x end.

Definition id (x : True) : True := x.
Definition δ (z : True) : True := z (True → True) id z.
Definition ω : True := λ (A : Prop) (a : A),

cast (True → True) A (tautext (True → True) A id a) δ.
Definition Ω : True := δ ω.

Fail Timeout 1 Eval lazy in Ω.

cast A A e x ⇝δβι x

Ω⇝δ δ ω

⇝δβ ω (⊤ → ⊤) id ω

⇝δβ cast (⊤ → ⊤) (⊤ → ⊤)
(tautext (⊤ → ⊤) (⊤ → ⊤) id id) δ ω

⇝δβι δ ω

⇝δ Ω
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Honorable mention: positive coinductive types in Coq

Positive coinductive types break subject reduction in Coq:
CoInductive Stream : Set := Seq (hd : nat) (tl : Stream).

Definition hd (x : Stream) := let (a, s) := x in a.
Definition tl (x : Stream) := let (a, s) := x in s.

Lemma Stream_eta (s : Stream) : s = Seq (hd s) (tl s).
Proof. Fail reflexivity. destruct s. reflexivity. Qed.

Set Primitive Projections.
CoInductive Stream' : Set := Seq' { hd' : nat; tl' : Stream }.

Lemma Stream'_eta (s : Stream') : s = Seq' (hd' s) (tl' s).
Proof. Fail reflexivity. Fail destruct s. Abort.

(* It is fine to assume the above as an axiom though. *)
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How can you prove consistency?

Consistency: there is no proof of ⊥ that the kernel verifies.

▶ If you have a known terminating reduction order (so SN/WN) and SR, you can
derive consistency if there is no normal form proof of ⊥.
▶ This approach is used by Coquand & Gallier (1990) to prove the consistency of CC.
▶ It does not work for Lean since we have seen that some terms have no (weak head)

normal form. (Although we have SR for ⊢ (so with ≡) as an immediate consequence
of the conversion rule.)

▶ Another option is to construct a model of the theory in a trusted axiomatic
framework, e.g., ZFC. Werner (1997) shows equiconsistency of ~CIC with ~ZFC.
▶ Carneiro takes this approach for Lean, proving that

ZFC + “there are n + 1 inaccessible cardinals” ⊢ Con(Lean with n + 1 universes).
▶ Lean (3) already had a ZFC model adapted from Werner’s model, so the reverse

direction did not need to be covered. (A model in Lean 4 now also exists.)
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Overview

definitional
inversion

CR

unique
typing

sort + lvl
proof-split
language
translation

ZFC model

reduction of ind.
types to W-types

soundness
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Lean as sets

▶ Interpret types (Γ ⊢ α type) as sets JΓ ⊢ αKγ .
▶ The γ that you see here is a valuation for the context, i.e., it assigns values to the

bindings declared in Γ.
▶ Represented as a (dependent) sequence of values.
▶ Jx1 : α1, . . . , xn : αn ⊢ xiKγ = πi(γ)

▶ Context interpretation: γ ∈ JΓK:
▶ J·K = {()}
▶ JΓ, x : αK = Σγ∈JΓKJΓ ⊢ αKγ

▶ How do we handle the complexity of inductive types, discern propositions from
types and handle universe variables?

We don’t!
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The proof-split language
▶ Constructs that produce proofs and propositions are separated from those that

produce terms and types:

⟨e1 e2⟩ =
{

⟨e1⟩Γ ⟨e2⟩Γ if sort(Γ ⊢ e1) = 0
⟨e1⟩Γ · ⟨e2⟩Γ if sort(Γ ⊢ e1) ≥ 1

⟨λx : α. e⟩ =
{

λx : ⟨α⟩Γ. ⟨e⟩Γ,x :a if sort(Γ ⊢ e) = 0
Λx : ⟨α⟩Γ. ⟨e⟩Γ,x :a if sort(Γ ⊢ e) ≥ 1

(similar for ∀: U0 → ∀, U1 → Π)
This will be very convenient for soundness.

▶ For simplicity, we also fix a universe level variable valuation here.
▶ Inductive types have already been translated to W-types + Σ-types (or

accessibility-based types for subsingleton types).
▶ Example: (λf : ⊥. λp : P. ↓ (reculift1

0 p
⊥ · f )) : ⊥ → ∀p : P. p
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Interpretation examples

▶ All propositions Γ ⊢ α : P are truncated to JΓ ⊢ αKγ ⊆ {•}.
▶ This means that all proofs Γ ⊢ e : α : P are truncated to •.
▶ As such, the implications of impredicativity and definitional proof irrelevance (as

demonstrated by the Abel & Coquand counterexample to termination) do not bother
us.

▶ To continue the example from last slide:

J⊢ PK() = J⊢ U0K() = {∅, {•}}
J⊢ ⊥K() = ∅

J⊢ λf . λp : P. ↓ (reculift1
0 p

⊥ · f )K() = •

J⊢ ∀f : ⊥. ∀p : P. pK() = {•} ∩
⋂

x∈J⊢⊥K

Jf : ⊥ ⊢ ∀p : P. pK(x) = {•}
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Soundness

▶ The general idea of soundness: ensure that everything ends up in the expected set.
Four parts to the main theorem (with limit cardinal specifics elided):

1. If Γ ⊢ α : P, then JΓ ⊢ αKγ ⊆ {•}.
2. If Γ ⊢ e : α and lvl(Γ ⊢ α) = 0, then JΓ ⊢ eKγ = •.
3. If Γ ⊢ e : α, then JΓ ⊢ eKγ ∈ JΓ ⊢ αKγ .
4. If Γ ⊢ e ≡ e′, then for all γ ∈ JΓK, JΓ ⊢ eKγ = JΓ ⊢ e′Kγ .

▶ (Note that the example from the last slides satisfies parts 1–3.)
▶ Simplified final soundness argument: if ⊩ e : ⊥ then ⊢ e : ⊥, so ⊢ ⟨e⟩v ,· : ⊥ (where

v sets all universe level variables to zero), but then J⊢ ⟨e⟩K() ∈ J⊢ ⊥K() = ∅, a
contraction.
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Intermezzo: faulty unique typing

▶ We saw the cycle unique typing → CR → def. inversion → unique typing before.
▶ It turns out that there is a flaw in how the proof is set up: unique typing is

currently merely a conjecture.
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Intermezzo: a reasonable proof setup

▶ Unique typing: if Γ ⊢ e : α and Γ ⊢ e : β, then Γ ⊢ α ≡ β.
▶ CR: if Γ ⊢ e : α and e1 ⇝∗κ e ⇝∗

κ e2, then ∃e′
1 e′

2. e1 ⇝∗
κ e′

1 ≡p e′
2 ⇝∗κ e2.

▶ Due to the mutual dependency of def. eq. and typing, unique typing and CR
depend on each other.

▶ Idea: we can still set up induction here; we just limit the amount of applications of
the conversion rule in the depth of the derivation tree.
▶ For a judgement Γ ⊢n e : α, every path to a leaf in the derivation tree may see at

most n appeals to the conversion rule (roughly).
▶ We start with proving unique typing for ⊢0.
▶ Then we fix n and prove CR with only ⊢n typing judgements. (And Γ ⊢n+1 e ≡ e′

judgements, which may only use ⊢n typing judgements.)
▶ Which we then use to prove definitional inversion for ⊢n+1, which then again gives us

unique typing for ⊢n+1.
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Intermezzo: a pesky lemma

So far, so good. . .

But in requiring ⊢n, a technical lemma breaks:

▶ Lemma 4.6 (Regularity of reductions), part (4) (Substitution).
If Γ, x : α ⊢n+1 e1 ≡p e′

1 and Γ ⊢n+1 e2 ≡p e′
2, then Γ ⊢n+1 e1[e2/x ] ≡p e′

1[e′
2/x ].

▶ Say we have e1 = e′
1, e2 = e′

2. Then by the reflexivity rule, Γ, x : α ⊢n e1 : β1 and
Γ ⊢n e2 : β2 for some β1, β2.

▶ Now we just need to prove Γ ⊢n e1[e2/x ] : β1[β2/x ].

 

▶ How bad is this?
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Lean4Lean: the state of theory & metatheory

▶ The full typing judgement is there and is related with the Expr type that Lean uses.
▶ Since the base theory of Lean has been extended a bit, the soundness proof that we

discussed is not applicable without modification.
▶ Since the proof of the unique typing theorem had an error, it remains to be seen

whether it can be salvaged.
▶ According to Carneiro, it is also possible to prove soundness without unique typing,

but would significantly affect the proof.
▶ ‘The Type Theory of Lean’ by Carneiro (2019) left the precise translation of

eliminators for inductive types as future work.
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The start of formal guarantees: the kernel

The kernel processes all elaborated, ordered definitions, and adds them to the
environment if they are well-typed:

addDecl : Environment → Declaration → Except KernelException Environment

▶ This interface is very simple; it is not unrealistic to separate the kernel from the rest
of the proof assistant or to run a completely independent kernel implementation.

▶ Lean 3 had such ‘external verifiers’, Lean 4 not.*
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Verifying the verifier

▶ End goal: the type checker is sound, i.e., it does not typecheck any term that is not
well-typed according to the theory. (Not considering extra axioms, unsafe
definitions etc.)

▶ Completeness is impossible, certainly w.r.t. the optimal typing judgement Γ ⊢ e : α.
▶ Before this, all parts of the theory (and some metatheory) need to be implemented.

▶ The most important part here is the typing judgement and some additional regularity
lemmas, which Carneiro presents in the Lean4Lean paper.

▶ So most of the work required seems to already be done, but it remains relatively
unclear from the paper what the next required steps for type checker verification are.
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Lean4Lean: the state of the verifier

▶ A reimplementation of the Lean C++ kernel, in Lean.
▶ Operates on compiled .olean files.
▶ Written so that a proof of soundness should be possible, but not proven correct yet.

lean4checker lean4lean slowdown

Lean 37.01 s 44.61 s 21%

Batteries 32.49 s 45.74 s 41%

Mathlib (+ Batteries + Lean) 44.54 min 58.79 min 32%

Table: Comparison of the C++ kernel and Lean4Lean on an i7-1255U, from the latest
Lean4Lean preprint
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Where does this all leave us?

▶ For lack of formal proofs, we can not truly trust our proof assistants.
▶ For example, CIC itself is well-studied and seems to be consistent. But as recently as

2021, Coq has one ‘proof of False’ report at least once a year due to implementation
bugs. (The kernel is quite complex at ~20kLoC OCaml, ~10kLoC C.)

▶ Despite Lean’s kernel being much smaller (~6.5kLoC C++) than that of Coq, some
soundness bugs still crept in with Lean 4.

▶ Verification of the kernel is currently the most important task at hand.
▶ Lean4Lean is an interesting project, but has very little manpower compared to

MetaCoq (especially for such a herculean effort).
▶ Nevertheless, we have then still not considered most of the rest of the stack, which

you must also trust.
▶ How strong are the guarantees that you require?
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Thank you for listening!
Questions?
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