Don't trust, verify: guarantees for the Lean proof assistant

MFoCS Seminar Presentation

Rutger Broekhoff

Radboud University Nijmegen

January 20, 2025

1/39

What is Lean?

» A proof assistant
» Heavily used for formalizing mathematics
» Has an expansive library for mathematics: mathlib

» Constructive core, classical community
» CIC-like type theory

» Impredicative P

» No universe cumulativity

» Universe polymorphism

» Definitional proof irrelevance

2/39

A small timeline

» Started in 2013 by Leonardo de Moura at Microsoft Research
» Lean 0.1 released in 2014

» Lean 2 (0.2) released in 2015

» Also allowed predicative P
» Started gathering interest
» Added support for HoTT

» Lean 3 released in 2017
» More user-friendly, extensible

» Removed support for HoTT
» Separate mathlib

» Lean 4 officially released in 2023

» More like a general-purpose language than previously
» Extensive macro processor, several kernel extensions
» Almost completely rewritten in Lean, kernel still in C4++

3/39

Frusting Verifying Lean

Several stages of enlightenment:
. A proof assistant written in C++ (2014)) QRQRa g

[y

2. A full mathematical specification of the type theory

3. A consistency proof of the former (both 2019)

4. Only the kernel written in C++ (2023)

5. The kernel also written in Lean (2024) < We are here!” 1.8, 8 & ok
6. A mechanized version of the type theory

7. A soundness proof for the kernel

8. A mechanical proof of TT consistency™” 1 0. 0.0 6 ¢

4/39

Mario Carneiro’s work

LeandLean: Towards a formalized metatheory for
prover

LeandLean: Towards

arXiv:2403.14064v2 [csPL] 3 Dec 2024

arXiv:2403.14064v1 [

Type Th f Lean: 2019 Lean4L int): 2024
ype Iheory of Lean Lean4Lean (preprint): 2024 eandLean (preprint)

5/39

A brief introduction: typing, definitional equality (§§ 2.1, 2.2)

Typing judgement: Definitional equality:

(these are just a select few rules)

CONVERSION TRANSITIVITY
Ne:a lNFa=p Ne =e N-e =¢;3
N-e:p lFe =63
-CONTRACTION PROOF IRRELEVANCE
Mx:ake:p r-¢e:a MN=p:P F=h:p Fr-h:p

M- (Ax:a.e) e =ele/x] r-h=H

6/39

Proof irrelevance

Say we define Xx : . B(x) as follows:

a: Uy, B:a— Uyt sigys = pt : Unagy 0,,1)- (exist 1 Vx 1a. B x — t)

> Now, say we let @ := N, 5 = Ax. x < 10.

» Then, e.g., existsig 5 hy = existsig 5 hy by compatibility and proof irrelevance.

7/39

A brief introduction: algorithmic equality (§ 2.3)
Definitional equality: Vs. Algorithmic equality:
(these are just a select few rules)

TRANSITIVITY
Ne=e e =63

&> lacks an explicit transitivity rule

e =e3
[-CONTRACTION REDUCTION
MNx:ake:p Nr-e:a e~ k M-k é
M- (A\x:a.e) e =ele/x] lFes ¢

8/39

Properties of Lean’s type theory

» Definitional equality is undecidable

» Algorithmic equality is not transitive, i.e.,

Jdel,ep,e3. 61 & &0 > e & e3 — €1 & €3
» Subject reduction fails in practice, i.e.,

Je,e. (TFe:a) ve~e =TI a
» Normalization fails, i.e.,

Je. 3. e=€e' Né€ Y)

9/39

Time for examples: undecidability of =

Three ingredients:
» Something that can unfold forever in an inconsistent context:
accessibility on a relation that is not well-founded (> on N)

» To control unfolding: a predicate P : N — 2 that is decidable,
but for which Vn : N, P n is undecidable:
“Turing machine M runs for at least n steps without halting”

» A function that combines both

10/39

Time for examples: undecidability of =

Three ingredients:

» Something that can unfold forever in an inconsistent context:

accessibility on a relation that is not well-founded (> on N)

» To control unfolding: a predicate P : N — 2 that is decidable,
but for which Vn : N, P n is undecidable:
“Turing machine M runs for at least n steps without halting”

» A function that combines both

10/39

Accessibility with < (WF)

acce = pA:N = P. (intro:Vx:N. (Vy Ny <x—=>Ay) = Ax)

reCacc : VC : N — U,. (Vx :N. (Vy : Ny < x — accc y) —
(Vy:Ny<x—>Cy)—
C x)—

Vn:N.acce n—Cn

11/39

Accessibility with < (WF)

acce = pA:N =P (intro:Vx:N. (Vy Ny <x—=Ay) = Ax)
introaec 0 g : acc. 0

0<1

intro,ec 0 g : acc. 0 introaec 1 h:acc. 1
0<2 1<2

introgec 2 f :acc. 2

11/39

Accessibility with > (not WF)

accs = pA:N = P. (intro:¥x :N. (Vy :N.y >x > Ay) > Ax)

2>1\3>1

introaec 1 g:acc. 1

introaec 0 f : acc= 0

12/39

Inversion on accessibility

» We can project out the second argument to intro using invy:
invy tacc x = Vy :N.y <x —accy

(invy is defined using rec,cc, but its exact definition is not that important)

> Additionally:
a = introaec x (invy a) :acc x : P

PROOF IRRELEVANCE
Fp:P =h:p Fr=hn:p

Fr-h=~H

13/39

Time for examples: undecidability of =

Three ingredients:

» Something that can unfold forever in an inconsistent context:
accessibility on a relation that is not well-founded (> on N)

» To control unfolding: a predicate P : N — 2 that is decidable,
but for which Vn : N, P n is undecidable:
“Turing machine M runs for at least n steps without halting”

» A function that combines both

14/39

Time for examples: undecidability of =

Three ingredients:

» Something that can unfold forever in an inconsistent context:
accessibility on a relation that is not well-founded (> on N) v/

» To control unfolding: a predicate P : N — 2 that is decidable,
but for which Vn : N, P n is undecidable:
“Turing machine M runs for at least n steps without halting”

» A function that combines both

14/39

Time for examples: undecidability of =

Three ingredients:

» Something that can unfold forever in an inconsistent context:
accessibility on a relation that is not well-founded (> on N) v/

» To control unfolding: a predicate P : N — 2 that is decidable,
but for which Vn : N, P n is undecidable:
“Turing machine M runs for at least n steps without halting” v/

» A function that combines both

14/39

Time for examples: undecidability of =

Three ingredients:

» Something that can unfold forever in an inconsistent context:
accessibility on a relation that is not well-founded (> on N) v/

» To control unfolding: a predicate P : N — 2 that is decidable,
but for which Vn : N, P n is undecidable:
“Turing machine M runs for at least n steps without halting” v/

» A function that combines both

14/39

Time for examples: undecidability of =

f:Vn.accs n—1
fi=recacc (A_. 1) (An_(g:Vy.y >x—1).

if P nthen g (n+1) (p n) else ())

15/39

Time for examples: undecidability of =

f:Vn.accs n—1
fi=recacc (A_. 1) (An_(g:Vy.y >x—1).

if P nthen g (n+1) (p n) else ())
f n (introgec n h) ~"if P nthen f (n+1) (h (n+1) (p n)) else ()

15/39

Time for examples: undecidability of = (recall a = introace x (invy a))

f:Vn.accs n—1
fi=recacc (A_. 1) (An_(g:Vy.y >x—1).

if P nthen g (n+1) (p n) else ())
f n (introgec n h) ~"if P nthen f (n+1) (h (n+1) (p n)) else ()
f0a=f0 (introsec 0 (invg a))
=f1(invgal(p0))
= f 1 (introaec 1 (invy (invg a 1 (p 0)))
=1f 2 (invy (invg al(p0))2(pl))

15/39

Time for examples: undecidability of = (recall a = introace x (invy a))

f:Vn.accs n—1
fi=recacc (A_. 1) (An_(g:Vy.y >x—1).

if P nthen g (n+1) (p n) else ())
f n (introgec n h) ~"if P nthen f (n+1) (h (n+1) (p n)) else ()
f0a=f0 (introsec 0 (invg a))
=f1(invgal(p0))
= f 1 (introaec 1 (invy (invg a 1 (p 0)))
=1f 2 (invy (invg al(p0))2(pl))

araccs OFf0a=() ifandonlyif —Vn. Pn

15/39

Algorithmic equality is not transitive (1)

f0a="f0 (introae O (invg a)) f0a<s f0(introae 0 (invg a))
=f1(invgal(p0)) < f1l(invgal(p0))
= f 1 (introaec 1 (invy (invg a 1 (p 0))) but
=f 2 (invy (invoal(p0))2(pl)) fOassf1(invgal(p0))

f:Vn.accs n— 2
fi=recacc (A_.2) (An_(g:Vy.y >x—2).
if P nthen g (n+1) (p n) else tt)
f n (introgec n h) ~*if P nthen f (n+1) (h(n+1) (p n)) else tt

16/39

Algorithmic equality is not transitive (2)

Also in a consistent context (a: accc 1):

flasf1(introge 1 (invy a))
& f 0 (invy a0 pp)
but
flassf 0 (invy a0 pp)

f:Vn acce n— 2
fi=recacc (A_.2) (An_(g:Vy. ¥y <x—2).
if P nthenif h:n#0then g (n—1) (p’ n h) else tt else tt)

f n(introgec n h) ~* if P nthenif h: n# 0then f (n—1) (h (n—1) (p n h)) else tt else tt

17/39

Subject reduction fails in practice (1)

> So far, we have demonstrated lack of transitivity for inhabitants of B : U;.
> We can use the same strategy to synthesize ‘problematic’ types in a consistent
context:

@ :1Vn. acce n— U;
@ =recacc (A_. U1) (An_(g:Vy. y <x— Uj).
if P nthenif h:n+#0then g (n—1) (p' n h) else N else N)

» We know that |jacc< 1|, so assume we have a: acc< 1 (a may not be transparent).
» Then define:

a=¢pla asef
B = 1 (introaec 1 (invy a)) so we have &y
v = 0 (invy a0 p}) a by

18/39

Subject reduction fails in practice (2)

> Let [I e: a denote the algorithmic typing judgement that Lean uses, like the
normal typing judgement, but using < instead of = in the conversion rule.

> Recall TFa < 5,8 v,a 4.

» We can prove that «, 3,7 = N, so we can cast, e.g., 0: N to 0: . Assume
M-e:n.

> Now:
I-idg e: 3, checks = 3 <
[id, (idg €) : o, checks T - a <
MNpFid, e:a, checks TFa< ybutlMFa sy
» But id, (idg e) < id, e since idg e ~~ e.
» So Tl IFid, (idg e) : o and id,, (idg €) < id, e, but not ' IFid, e: a.

19/39

Subject reduction does not fail in theory

» As demonstrated here:

lN-asp MNx:akFas a
MNkida :Vx: a. « MN-Vx:a.asVx: poa Mke:~ Nr-sg&~
MNkido :Vx: 6. MN-e:g
MNFide e: a

20/39

Subject reduction does not fail in theory

» As demonstrated here:

lN-asp MNx:akFas a
MNkida :Vx: a. « MN-Vx:a.asVx: poa Mke:~ Nr-sg&~
MNkido :Vx: 6. MN-e:g
MNFide e: a

» Conclusion: Carneiro's algorithmic type judgement is less strict than the one Lean
uses internally.
» This is totally fine as long as we consider an overapproximation of what Lean does.

» (This is actually not the case: Lean considers a,b:1: Uy I a= b, but this may have
not been the case in Lean 3.)

20/39

Abel & Coquand nontermination proof

» Type theories with proof irrelevance and impredicative P lose strong normalization.

> Lean falls into this category.
» So does Coq with SProp, as long as you enable definitional UIP.

» Two variants:

1. using the absurdity that all propositions are equal, and
2. using (weak) propositional extensionality.

21/39

Abel & Coquand nontermination proof: exhibit A

Set Definitional UIP.

Inductive seq {A} (a:A) : A — SProp ==
srefl : seq a a.

Definition cast (A B: Prop) (e : seqAB) (x: A):
match e with srefl _ = x end.

Definition False : Prop :=V A : Prop, A.
Definition Not (A : Prop) := A — False.
Definition True : Prop := Not False.

Definition § : True := \ z : False, z True z : False.
Definition w (h:V A B : Prop, seq A B) : False :=
A A : Prop, cast True A (h True A) § : A.
Definition Q (h: VA B : Prop, seq A B) : False :=
0 (w h).

Fail Timeout 1 Eval lazy in Q.

B:

cast A A e x ~58, X

Q h~sp 0 (w h)
~sg wh T (wh)
~sg cast T T (hT T)6 (wh)
~56. 0 (w h)

“58

Qh

22/39

Abel & Coquand nontermination proof: exhibit B

Set Definitional UIP.

Inductive seq {A} (a: 4) : A — SProp =
srefl : seqa a.

Axiom tautext : V (A B : Prop), A — B — seq A B.
Definition True : Prop :=V A : Prop, A — A.

Definition cast (A B: Prop) (eq: seqAB) (x: A) : B =

match eq with srefl _ = x end.

Definition id (x : True) : True = x.
Definition (z : True) : True := z (True — True) id z.
Definition w : True ;== A (A : Prop) (a : 4),

cast (True — True) A (tautext (True — True) A id a) 4.
Definition Q : True = § w.

Fail Timeout 1 Eval lazy in Q.

cast A A e x ~58, X

Qs dw
w53 w(T—T)idw
~sg cast (T —=T)(T —=T)
(tautext (T—>T) (T —>T)idid) d w
~58, 0 W
s Q

23/39

Honorable mention: positive coinductive types in Coq

Positive coinductive types break subject reduction in Coq:

CoInductive Stream : Set := Seq (hd : nat) (t1 : Stream).

Definition hd (x : Stream) = let (a, s) ==x in a.
Definition tl (x : Stream) := let (a, s) '=x in s.

Lemma Stream_eta (s : Stream) : s = Seq (hd s) (t1 s).
Proof. Fail reflexivity. destruct s. reflexivity. Qed.

Set Primitive Projections.
CoInductive Stream': Set := Seq' { hd' : nat; t1': Stream }.

Lemma Stream'_eta (s : Stream') : s = Seq' (hd' s) (t1' s).
Proof. Fail reflexivity. Fail destruct s. Abort.

(x It is fine to assume the above as an axiom though. *)

24 /39

How can you prove consistency?

Consistency: there is no proof of L that the kernel verifies.

25 /39

How can you prove consistency?

Consistency: there is no proof of L that the kernel verifies.

» If you have a known terminating reduction order (so SN/WN) and SR, you can
derive consistency if there is no normal form proof of L.

» This approach is used by Coquand & Gallier (1990) to prove the consistency of CC.

> It does not work for Lean since we have seen that some terms have no (weak head)

normal form. (Although we have SR for |- (so with =) as an immediate consequence
of the conversion rule.)

25/39

How can you prove consistency?

Consistency: there is no proof of L that the kernel verifies.

» If you have a known terminating reduction order (so SN/WN) and SR, you can
derive consistency if there is no normal form proof of L.
» This approach is used by Coquand & Gallier (1990) to prove the consistency of CC.
> It does not work for Lean since we have seen that some terms have no (weak head)
normal form. (Although we have SR for |- (so with =) as an immediate consequence
of the conversion rule.)
» Another option is to construct a model of the theory in a trusted axiomatic
framework, e.g., ZFC. Werner (1997) shows equiconsistency of ~CIC with ~ZFC.
» Carneiro takes this approach for Lean, proving that
ZFC + “there are n+ 1 inaccessible cardinals” F Con(Lean with n+ 1 universes).
> Lean (3) already had a ZFC model adapted from Werner's model, so the reverse
direction did not need to be covered. (A model in Lean 4 now also exists.)

25/39

Overview

definitional
inversion N\

i CR
unique reduction of ind.
typing types to W-types
sort + Ivl

proof-split
\> language
translation
ZFC model
soundness

26/39

Lean as sets

» Interpret types (I - « type) as sets [F of,.
» The ~ that you see here is a valuation for the context, i.e., it assigns values to the
bindings declared in I
> Represented as a (dependent) sequence of values.

> [acar,. Xt an b Xy =mi(y)
» Context interpretation: ~ € [I7]:
> [1=10}

> [x:a] =X gnll - af,
» How do we handle the complexity of inductive types, discern propositions from
types and handle universe variables?

27/39

Lean as sets

» Interpret types (I - « type) as sets [F of,.
» The ~ that you see here is a valuation for the context, i.e., it assigns values to the
bindings declared in I
> Represented as a (dependent) sequence of values.

> [acar,. Xt an b Xy =mi(y)
» Context interpretation: ~ € [I7]:
> [1=10}

> [x:a] =X gnll - af,
» How do we handle the complexity of inductive types, discern propositions from
types and handle universe variables? We don’t!

27/39

The proof-split language

» Constructs that produce proofs and propositions are separated from those that
produce terms and types:

_ J{e)r (e2)r ifsort(F-e)=0

(e1 &) = {<61>r {ex)r ifsort(lte)>1
. - AX <Oé>r' <e>r,x:a if Sort(r - e) =0
<)\X - e> - {/\X . <Oé>|'~ <e>r,x:a if sort(l' + e) Z 1

(similar for ¥V: Ug — V, Uy —)
This will be very convenient for soundness.
» For simplicity, we also fix a universe level variable valuation here.

» Inductive types have already been translated to W-types + X-types (or
accessibility-based types for subsingleton types).

» Example: (A\f: L. Ap:P. | (reci“ft(l’p f):L—>Vp:P.p

28/39

Interpretation examples

» All propositions ' - o : P are truncated to [- o], C {e}.

» This means that all proofs ' - e : « : P are truncated to e.

» As such, the implications of impredicativity and definitional proof irrelevance (as
demonstrated by the Abel & Coquand counterexample to termination) do not bother
us.

» To continue the example from last slide:
[-Ply = [F Uoly = {0, {e}}
[+ J_]]() =0
[FAF. Ap P, | (rec ™2 £)]() = o

[Fvf:LVp:P.plg={e}n () [f:LEVp:P. p]u ={e}
xe[F1]

29/39

Soundness

» The general idea of soundness: ensure that everything ends up in the expected set.
Four parts to the main theorem (with limit cardinal specifics elided):
1. f T+ a: P, then [+ o], C {e}.
2. fTFe:aand WI(T-a) =0, then [T F e], =e.
3. fTFe:q, then [TFe], €[l al,.
4. IfT-e=é, thenforally e [I], [I+e], =[IF €],

> (Note that the example from the last slides satisfies parts 1-3.)

» Simplified final soundness argument: if - e: L thene: L, soF (e),.: L (where
v sets all universe level variables to zero), but then [<e>]]() e[+ J_]]() =0, a
contraction.

30/39

Intermezzo: faulty unique typing

31/39

Intermezzo: faulty unique typing

> We saw the cycle unique typing — CR — def. inversion — unique typing before.

» It turns out that there is a flaw in how the proof is set up: unique typing is
currently merely a conjecture.

31/39

Intermezzo: a reasonable proof setup

» Unique typing: f THFe:aand T e: 3, then T a=p.

> CR:ifTFe:aand e «) e~ e, then Jef €. e1 ~% €] =p &) «% e,

» Due to the mutual dependency of def. eq. and typing, unique typing and CR
depend on each other.

» Idea: we can still set up induction here; we just limit the amount of applications of
the conversion rule in the depth of the derivation tree.

» For a judgement [I, e : a, every path to a leaf in the derivation tree may see at
most n appeals to the conversion rule (roughly).

» \We start with proving unique typing for .
» Then we fix n and prove CR with only -, typing judgements. (And Tk, e=¢€

judgements, which may only use F, typing judgements.)
» Which we then use to prove definitional inversion for t-,,1, which then again gives us

unique typing for F,41.

32/39

Intermezzo: a pesky lemma

So far, so good...

» Lemma 4.6 (Regularity of reductions), part (4) (Substitution).
IfT,x:abpire1=p € and T Fpp1 60 =, €, then T Fypq erer/x] =p e1]eh/x].

33/39

Intermezzo: a pesky lemma

So far, so good...But in requiring I, a technical lemma breaks:
» Lemma 4.6 (Regularity of reductions), part (4) (Substitution).
IfT,x:abpire1=p € and T Fpp1 60 =, €, then T Fypq erer/x] =p e1]eh/x].

> Say we have e; = €], e = €. Then by the reflexivity rule, I',x : -, €1 : f1 and
I, e : Bo for some (1, Bo.

33/39

Intermezzo: a pesky lemma

So far, so good...
» Lemma 4.6 (Regularity of reductions), part (4) (Substitution).
IfT,x:abpire1=p € and T Fpp1 60 =, €, then T Fypq erer/x] =p e1]eh/x].

> Say we have e; = €], e = €. Then by the reflexivity rule, I',x : -, €1 : f1 and
I, e : Bo for some (1, Bo.
» Now we just need to prove I b, e1[e2/x] : B1[B2/x].

33/39

Intermezzo: a pesky lemma

So far, so good...
» Lemma 4.6 (Regularity of reductions), part (4) (Substitution).
IfT,x:abpire1=p € and T Fpp1 60 =, €, then T Fypq erer/x] =p e1]eh/x].

> Say we have e; = €], e = €. Then by the reflexivity rule, I',x : -, €1 : f1 and
I, e : Bo for some (1, Bo.
» Now we just need to prove I' b, e1[e2/x] : B1[B2/x]. 4

33/39

Intermezzo: a pesky lemma

So far, so good...

>

>

Lemma 4.6 (Regularity of reductions), part (4) (Substitution).
IfT,x:abpire1=p € and T Fpp1 60 =, €, then T Fypq erer/x] =p e1]eh/x].

Say we have e; = €], ex = €. Then by the reflexivity rule, I',x : aF, €1 : 51 and
I, e : Bo for some (1, Bo.
Now we just need to prove I' b, e1[e2/x] : B1[52/x]. 4

How bad is this?

33/39

Lean4lLean: the state of theory & metatheory

34/39

Lean4lLean: the state of theory & metatheory

» The full typing judgement is there and is related with the Expr type that Lean uses.
» Since the base theory of Lean has been extended a bit, the soundness proof that we
discussed is not applicable without modification.

» Since the proof of the unique typing theorem had an error, it remains to be seen
whether it can be salvaged.

» According to Carneiro, it is also possible to prove soundness without unique typing,
but would significantly affect the proof.

» ‘The Type Theory of Lean’ by Carneiro (2019) left the precise translation of
eliminators for inductive types as future work.

34/39

The start of formal guarantees: the kernel

The kernel processes all elaborated, ordered definitions, and adds them to the
environment if they are well-typed:

addDecl : Environment — Declaration — Except KernelException Environment

» This interface is very simple; it is not unrealistic to separate the kernel from the rest
of the proof assistant or to run a completely independent kernel implementation.

» Lean 3 had such ‘external verifiers’, Lean 4 not.”

35/39

Verifying the verifier

> End goal: the type checker is sound, i.e., it does not typecheck any term that is not
well-typed according to the theory. (Not considering extra axioms, unsafe
definitions etc.)

» Completeness is impossible, certainly w.r.t. the optimal typing judgement I' - e : a.

» Before this, all parts of the theory (and some metatheory) need to be implemented.

» The most important part here is the typing judgement and some additional regularity
lemmas, which Carneiro presents in the Lean4Lean paper.

» So most of the work required seems to already be done, but it remains relatively
unclear from the paper what the next required steps for type checker verification are.

36/39

Lean4lLean: the state of the verifier

> A reimplementation of the Lean C++ kernel, in Lean.
» Operates on compiled .olean files.

> Written so that a proof of soundness should be possible, but not proven correct yet.

lean4checker leandlean slowdown

Lean 37.01s 4461 s 21%
Batteries 32.49 s 45.74 s 41%
Mathlib (4 Batteries + Lean) 44 54 min 58.79 min 32%

Table: Comparison of the C++ kernel and Lean4Lean on an i7-1255U, from the latest
Lean4Lean preprint

37/39

Where does this all leave us?

» For lack of formal proofs, we can not truly trust our proof assistants.

» For example, CIC itself is well-studied and seems to be consistent. But as recently as
2021, Coq has one ‘proof of False’ report at least once a year due to implementation
bugs. (The kernel is quite complex at ~20kLoC OCaml, ~10kLoC C.)

> Despite Lean’s kernel being much smaller (~6.5kLoC C++) than that of Coq, some
soundness bugs still crept in with Lean 4.

38/39

Where does this all leave us?

» For lack of formal proofs, we can not truly trust our proof assistants.
» For example, CIC itself is well-studied and seems to be consistent. But as recently as
2021, Coq has one ‘proof of False’ report at least once a year due to implementation
bugs. (The kernel is quite complex at ~20kLoC OCaml, ~10kLoC C.)
> Despite Lean’s kernel being much smaller (~6.5kLoC C++) than that of Coq, some
soundness bugs still crept in with Lean 4.
» Verification of the kernel is currently the most important task at hand.

38/39

Where does this all leave us?

» For lack of formal proofs, we can not truly trust our proof assistants.

» For example, CIC itself is well-studied and seems to be consistent. But as recently as
2021, Coq has one ‘proof of False’ report at least once a year due to implementation
bugs. (The kernel is quite complex at ~20kLoC OCaml, ~10kLoC C.)

> Despite Lean’s kernel being much smaller (~6.5kLoC C++) than that of Coq, some
soundness bugs still crept in with Lean 4.

» Verification of the kernel is currently the most important task at hand.

» Lean4lean is an interesting project, but has very little manpower compared to
MetaCoq (especially for such a herculean effort).

38/39

Where does this all leave us?

» For lack of formal proofs, we can not truly trust our proof assistants.

» For example, CIC itself is well-studied and seems to be consistent. But as recently as
2021, Coq has one ‘proof of False’ report at least once a year due to implementation
bugs. (The kernel is quite complex at ~20kLoC OCaml, ~10kLoC C.)

> Despite Lean’s kernel being much smaller (~6.5kLoC C++) than that of Coq, some
soundness bugs still crept in with Lean 4.

» Verification of the kernel is currently the most important task at hand.

» Lean4lean is an interesting project, but has very little manpower compared to
MetaCoq (especially for such a herculean effort).

» Nevertheless, we have then still not considered most of the rest of the stack, which
you must also trust.

> How strong are the guarantees that you require?

38/39

Thank you for listening!

Questions?

	Lean
	Some History
	Trusting Lean

	Mathematical description the theory
	Abel & Coquand paper
	Consistency of the theory
	Lean4Lean
	Verifying the verifier

	Conclusion

